
Family Tree Visualization
Kerstin Keller

University of California, Berkeley
Email: k keller@berkeley.edu

Prahalika Reddy
University of California, Berkeley

Email: prali@berkeley.edu

Shimul Sachdeva
University of California, Berkeley

Email: shimul@berkeley.edu

Abstract—This paper discusses the layout of a family tree
that emphasizes temporal data. The ancestors and descen-
dants are laid out radially around a centered person. The
layout also supports dynamic interaction with the family
tree.

I. INTRODUCTION

A. Motivation
Family trees are one of the most common ways to

trace the genealogy of a certain person. Family trees have
existed for a long time, and the interest in them has not
waned. Many people work on constructing their family
tree as a common pastime or hobby. In addition, family
trees can be very useful in medical and anthropological
studies.

B. Problems
Many family trees fail to properly encode all the

necessary and useful information. There are very few
family trees that effectively visualize temporal data.
Being able to easily see the differences in ages among
different nodes is very useful in family trees. In ad-
dition, encoding ages into a family tree also provides
the ability to extract more information, such as the age
ranges within a single generation or among multiple
generations. Unfortunately, there are not many ways to
do so in a clean and effective manner.

Another problem that family trees do not effectively
solve is the issue of scalability and clutter. As a family
tree gets bigger, visualizing it becomes a more difficult
task because the chances of clutter get higher. In addi-
tion, easily searching for a node in family trees is also
difficult because there is no easy path to follow unless a
user has more information about that person.

C. Solution
In this paper, we discuss our solution to these prob-

lems and how they are implemented in the visualization.
First of all, the conical-shaped family tree layout helps
immensely with the problems listed above. The family
tree has ancestors above and descendents below a central
root node. The root node is the center of the tree and
the upper and lower halves of the tree fan out from it.
In addition, the family tree visualization has a circular
axis that highlights the age differences between certain
nodes. The circular axis is centered on the root node,
and allows the user to see which nodes are how far in

age from the root node. Each ring in the circular axis
represents a certain number of years from the root node.
Finally, by implementing many interactive features in
this family tree, we have been able to effectively show
temporal data and reduce unnecessary clutter in the
tree.

II. RELATED WORK

Family trees have been a topic of interest for re-
searchers. Various approaches for visualizing tree-like
structures have been researched.

A. Research
1) Tree Panel - A study on multiple views for tree

visualization: In his paper, Soon Tee Teoh, talks about
multiple views for tree visualization [1]. The paper
discusses Tree-panels, a tree visualization system that
provides four simultaneous visualizations of a tree.
These four layouts are:

1) RINGS Layout
2) Radial Tree Layout
3) TreeMap Layout
4) Hierarchical Layout
In figure 1, the RINGS and hierarchical layouts can be

seen [1]. The paper discusses results from user studies
conducted to get responses on effectiveness of the four
different visualizations.

2) Interactive Fan Charts: In [2], Draper and Riesenfeld
talk about interactive fan charts as a space-saving tech-
nique for genealogical graph exploration. A fan chart
is a radial structure where a person’s name is drawn in
the center of the graphic, surrounded by concentric rings
containing the names of the person’s ancestors (see Fig-
ure 2). Fan charts are a popular method for visualizing
family trees, due perhaps in part to their aesthetic appeal
as well as their compact appearance relative to the more
commmon tree-based pedigree chart. We leverages this
idea of a radial layout in our implementation.

B. Existing family tree software
There exists a number of commercial as well as free

software applications for generating family trees. The fo-
cus of most of these trees is to allow users to dynamically
build a tree - by interactively adding nodes.

Some examples include:

Fig. 1: Horizontal Hierarchical Layout (left) and RINGS
layout (right) of an actual file directory tree. The sim-
ilarity between the sub-directories is more obvious in
RINGS, while the hieratchical layout uncovers many im-
mediate files (leaves) in this directory that are obscured
in RINGS.

Fig. 2: A sample fan chart.

1) PAF Companion 5.4: PAF (Personal Ancestral File)
helps users organize their family history records. It can
produce, either on screen or on paper, pedigree charts,
family group records, and other reports to help users in
their search for missing ancestors [3].

PAF Companion - Pros
• The colors make it easy to identify nodes at different

levels as the tree gets huge
• Each node has a label with information
• Birthyears convey some temporal information
PAF Companion - Cons
• As can be seen in figure 3, this is a one-sided tree,

showing only ancestors
• The tree is a static image without much interaction
• Temporal data cannot be easily compared or ana-

lyzed
2) MyHeritage.com: Their vision has been to make it

easier for people around the world to use the power
of the Internet to discover their heritage and strengthen

Fig. 3: PAF Companion 5.4

Fig. 4: MyHeritage.com

their bonds with family and friends [4].
MyHeritage.com - Pros
• The pink/blue colors help to identify gender
• The labels contain qualitative information about the

nodes
• Presents some form of temporal information - birth

and death years
MyHeritage.com - Cons
• Temporal data, even though present on each node,

is not easily comparable across nodes
• Scalability with the structure is hard
3) GenoPro: GenoPro is a user-friendly comprehen-

sive software that allows one to draw family trees and
genograms that can be shared with family. [5]

GenoPro - Pros
• The tree edges encode emotional aspects of relation-

ships well
• The labels contain birth information

Fig. 5: GenoPro

Fig. 6: Online Social Community Representation using
Vizster

GenoPro - Cons

• Temporal data, even though present on each node,
is not easily comparable across nodes

• The different symbols make the tree look confusing
• Excessive use of color also contributes to the clut-

tered look

4) Vizster: Vizster is a tool built upon Prefuse that is
aimed at visualizing online social networks [6]. Even
though the structure of the graph is similar to what
we hope to achieve through our visualization, it still
does not convey temporal information. Figure 6 shows

a sample visualization.

C. Existing Problems

From the above examples, some common problems
can be identified (enumerated below):

• Most software applications create static family trees,
without much interaction

• Scalability of trees poses problems
• Temporal or geographical data is often not depicted

well, or at all
• Rare relationships like second marriages and incest

are not well depicted
• Searching over tree nodes has not received much

attention

D. Existing graph layout algorithms

1) Radial layout algorithm: Draper and Riesenfeld’s
paper gave the idea to center a person in the middle
of the family tree layout and display all ancestors and
descendants around it [7]. In general, radial graph
layouts specify a root node and place all other nodes
circularly around that root node [8] and [9].

2) Force directed layout algorithms: One of the proper-
ties of a nice graph is that nodes that are connected by an
edge should be close to each other (or a certain distance
apart when the edges are weighted). On the other hand,
two nodes should not be so close to each other that
they overlap [10]. A way to produce a graph that meets
these properties is to model the graph as a ”mass-spring-
system”. For mass-spring systems, each node is given a
mass, and is connected by springs to other nodes [11].
Differential equations for each node have to be solved
to update its position.

Force directed layout algorithms produce visually ap-
pealing results for smaller graphs, but they are usually
not suited for large graphs due to time-constrained
interactive visualizations [12].

III. DISPLAYING TEMPORAL DATA

The main goal of the visualization is to display tempo-
ral information in the context of family trees. This entails
showing the age differences within the same generation
of a family. In order to encode temporal data in the
visualization, we took two approaches.

A. Edge Lengths

Each visualization, when rendered, is centered around
a root node. The length of the edge between a node in the
tree and the root represents the age difference between
the two nodes. Hence, length is used to represent relative
ages. For instance, a person who is two years older to the
root will be closer to the root, than a person who is ten
years older. This invariant of edge length representing
age gap, is however, limited to the edges of the root
node. The length between other nodes in the graph does

1970
1980

2000

1940

1990

1930
1920

1910

Fig. 7: Radial Family Tree Layout

not represent age difference. This applies to nodes that
do not have a direct edge to the root node.

In Figure 7, the center is the root. Edges joining other
nodes to the root represent the age difference from
the root node in terms of their length. The nodes on
the outermost concentric circle are older than the ones
on the inner circles. Non-rooted edges do not respect
this principle. Since the root node can be dynamically
changed, if relative ages of two non-rooted nodes is
required, one of these nodes can be made the root. The
layout will then be re-rendered with the new root and
the temporal information with respect to the required
node can be seen.

B. Circular Axes

Figure 7 shows circular arcs spanning the nodes. Each
arc represents a relative distance from the root node, as
labeled on the left. The farther away a concentric arc is
from the center, the bigger the difference between the
birthyears with respect to the root node. As mentioned
previously, the hourglass layout divides the tree into
ancestors on the top half and descendants on the bottom
half of the tree. Hence, the birthyears increase inside
out in the bottom half (old to young) and decrease in
the upper half (young to old). The radial structure of
the tree preserves space and allows nodes to be more
spaciously placed. With the added ability to change the
degree of steepness of the hourglass, the problem of node
cluttering is easily addressed.

1 void f indChi ldren (NodeItem n)
2 {
3 f o r (a l l outgoing Edges)
4 {
5 nextEdge . s e t V i s i b l e () ;
6 nextEdge . t a r g e t I t e m () . s e t V i s i b l e () ;
7 f indChi ldren (nextEdge . t a r g e t I t e m ()) ;
8 }
9 }

Listing 1: Ensuring visibility of direct descendants

IV. METHODS

A. Choosing the subgraph to display
To improve the layout and avoid cluttering, we chose

to only display the direct ancestors and descendants of
the root node. Therefore all displayable nodes can be
found with a depth-first search, traversing all outgoing
edges to find children and the incoming edges to find
ancestors.

B. Laying out the graph
For the layout, the graph is divided into two different

trees, the descendant tree and the ancestor tree, which
are laid out separately using the same scheme.

The idea behind our graph layout algorithm is to
combine a simple radial layout with a force directed
layout. The simple radial layout is run first and it
produces a layout that fulfills the basic demands of
encoding age difference as distance to root node. The
force directed layout is run afterwards and it performs
minor adjustments in case two nodes are placed close
to each other, thus avoiding clutter.

1) Simple Radial Layout: The simple Radial Layout
visits every node only once, hence it is linear in runtime
and very suited for interactive visualization. We placed
all descendants of the root node within a cone of a
certain angle. The only constraint is posed by adjusting
the distance to the root to ensure the encoding of age
difference.

Conveniently, the coordinates to place the nodes can
be described in polar coordinates. The radius is given
by the age gap to the root node. Each root node is also
given a range in which it and all its descendants lie.
The node is placed in the center of its range (angle β,
starting angle α, see Figure 8) so the resulting angel φ
is given by φ = α + β

2 . The range δ for the children of
each node is given by splitting the α in n equal slices
for the n children of the node. The user can interactively
specify the angle of the range α of the root node and
hence change the steepness of the hourglass appearance
of the graph.

A drawback to this method is, that it does not
account for whether the laid out nodes have children
themselves, since it gives all of them equal spacing.

γ

δ

α

β

Fig. 8: This figure shows how the nodes are placed. The
blue node is place in the middle of its range β with the
starting angle α. All four child nodes are assigned a new
range δ = α

4 with respecting new starting angles γ (here
for the red highlighted node). They are then placed in
the middle of their new range δ with the right distance
to the root node, and the same method is repeated for
all their children.

This way, the tree can get very unbalanced, by being
crowded and cluttered in one part and having no
nodes to display in another part. (See Figure 9) This
case is rather unlikely for a familytree, but it might occur.

2) Force Based Layout: The force based layout makes
adjustments for cases where the first layout becomes
rather unbalanced.

For a force based layout, the whole graph is modeled
as a mass-spring system. In mass-spring systems, each
node is assigned a mass, and is connected by springs,
which represent edges, to other nodes. Each particle
behaves according to the the equations of motion

mẍ = F (1)

where m is the mass of the node, ẍ is its acceleration
and F are the forces that act on the node.

Since the nodes are connected by springs, a spring
force acts on each node.

F = kx (2)

Springs store potential energy and act with a force. The
amount of force exerted by a spring depends on the
spring constant k and the relative position of the spring
with respect to its rest position x.

(a)

(b)

Fig. 9: a) shows a decent layout that would be produced
by the simple graph layout. Fig. b) shows the case of a
very unbalanced tree

1 void placeChildNodes (NodeItem n , NodeItem
root , double angleRange , double
s tar tAngle)

2 {
3 i n t out = n . getOutDegree () ;
4 double s l i c e = angleRange/out ;
5 i n t i =0 ;
6 f o r (I t e r a t o r i t =n . outNeighbors () ;

i t . hasNext () ;)
7 {
8 NodeItem kid =(NodeItem) i t . next () ;
9 double angle =(2* i +1) / 2 . 0 * s l i c e +

s tar tAngle ;
10 radius = kid . g e t I n t (b i r t h d a t e) −

root . g e t I n t (b i r t h d a t e) ;
11 kid . setX (root . getX () +

radius *Math . cos (angle)) ;
12 kid . setY (root . getY () −

radius *Math . s i n (angle)) ;
13 //Recursive c a l l f o r ch i ldren
14 placeChildNodes (kid , root , s l i c e ,

angle−s l i c e * 0 . 5) ;
15 i ++;
16 }
17 }

Listing 2: Recursive placement of child nodes

(a) (b)

Fig. 10: a) shows a the layout before applying the force
directed layout. Nodes to the bottom of the picture are
very close to each other. b) after applying the force
directed layout the closeness of nodes is reduced

In addition to these mass spring forces, the nodes are
modeled to repel each other like atoms do on a molecular
level.

Force directed layout algorithms solve these equations
of motion with a certain time step and updates the posi-
tion of each node until the system reaches an equilibrium
point, e.g., until the velocity and acceleration of each
node equals zero.

For our layout, two kinds of springs are used: A spring
between a parent and its child and a spring between
each node and the root node. The latter keeps the node
at the correct age distance. It is modeled as a ”stiff”
spring, a spring with a rather high spring coefficient. By
giving the spring a high coefficient, it is unlikely that the
spring will change its length, which corresponds to the
age difference between root and child node. The edges
between parent and child node are modeled as ”soft
springs” with a lower spring coefficient, allowing for
stretching of these strings beyond their age difference.
The root node is set to a fixed point and is not allowed to
move during the simulation. This is achieved by setting
all forces that are acting on it to zero.

This layout algorithm is run after running the simple
radial layout and drives cluttered nodes away from each
other. (See Figure 10) We found it convenient to use
only 10 iterations of the force directed layout algorithm.
This is enough to drive cluttered nodes away from each
other, however it keeps the basic shape of the layout.
Using more iterations can introduce crossings of edges
and other unpleasant artifacts to the layout.

C. Animation between Layouts
The family tree only shows direct ancestors and

descendants of the current root node. When switching
the root node to another person, some subtrees need to
be collapsed or others that had been collapsed need to
be displayed.

1) Direct Transitions: Moving one level down in the
tree (e.g., making a child node the root node) results
in collapsing other children of the former root and
expanding all other ancestors of the new root. (See
Fig. 11) Moving one level up in the tree (e.g., making
an ancestor the new root node) requires collapsing the
former roots other ancestors and displaying the new
root’s other descendants.

To get a smooth transition when switching the focus
node between two direct neighbors, the subtree that will
disappear is collapsed first, then the nodes that stay
visible are transitioned and finally the newly expanded
subtree is made visible.

For the transitioning of nodes, a polar animation as
described in ”‘Animated exploration of dynamic graphs
with radial layout”’ is used [13]. The coordinates are not
linearly interpolated in the sense of a Cartesian coor-
dinate system, but rather linearly in the sense of polar
coordinates. This results in nodes moving on curves and
provides smoother transitions. Prefuse already imple-
ments a class to animate those changes.

Prefuse also provides a class for animating the
collapsing of subtrees.

2) Longer Distance Transitions: When transitioning be-
tween two nodes that are more distant (like a person
and their great-grandmother) multiple subtrees need to
be collapsed and expanded. To smoothly animate these
changes, the path between those two nodes is traversed.
This means that to animate the root change between a
person and their great-grandmother, the change from
root node to mother, from mother to grandmother and
finally from grandmother to great-grandmother is ani-
mated.

V. SOFTWARE USED

There are various good software programs out there
that can be used to implement our design. Protovis,
JQuery, OpenGL, JavaScript and ActionScript are a few.

The requirements of our design - the radial and the
force-directed layout are best supported by Prefuse.
Prefuse is a set of software tools for creating rich in-
teractive data visualizations. The original prefuse toolkit
provides a visualization framework for the Java pro-
gramming language. The prefuse flare toolkit provides
visualization and animation tools for ActionScript and
the Adobe Flash Player [14].

We created a FamilyTreeLayout that extends the
ForceDirectedLayout and RadialLayout classes. The label

1970
1980

2000

1940

1990

1930
1920

1910

(a)

1970
1980

2000

1940

1990

1930
1920

1910

(b)

1970
1980

2000

1960

1990

1950
1940

(c)

Fig. 11: Expanding and collapsing of subtrees when changing the root node: a) shows the subtree that needs to be
collapsed, when changing the root from the red to the dark green node in b). When changing the root node further,
from dark green to light green in Figure c), the parent tree of the new root node is expanded.

renderer and JPanel components introduce interactivity
in the visualization. We also added a search functionality
which searches over the names of the nodes in the family
tree which are also used to label the nodes.

VI. RESULTS

This family tree visualization effectively encodes tem-
poral data. The conical layout of the tree with the circular
axis allows the user to easily see the age differences
between a node and the root. In addition, there are many
interactive features that the user can use to further the
amount of information he can extract from this tree.
These features are described below.

A. Interactive Features

1) Dynamic Root Node Switching: We implemented the
ability to change the root node of the family tree. Click-
ing on a node will change the focus point of the tree
and the tree is restructured to center around the new
root node. The layout of the tree will change so that
the new root node’s ancestors are still above it and
its descendents are below it. In addition, the length of
the edges between two nodes, such as the new root
node and a neighboring node, adjust to reflect the age
difference between them. Depending on the nature of the
family, any nodes that are irrelevant to the new root node
disappear and previously hidden nodes that concern the
new root node appear (see Figure 12).

By providing dynamic root node switching, our
implementation of the family tree is more useful and
interactive. The ability to change the central node
around which all other calculations are done immensely
adds to the amount of information that can be extracted
from the tree. When users view the tree in different
layouts, they can see different patterns emerge and
provide more analysis. In addition, dynamic node
switching reduces the clutter involved in family trees

(a)

(b)

Fig. 12: a) This image shows the family tree visualization
with temporal data encoded. b) Once the root node
has been changed dynamically, some nodes disappear
to make the tree less cluttered.

Fig. 13: When the user hovers over a name, a tooltip
with more information about that person appears, as
shown. In the image above, the user can see that ”‘Uwe
Hoffman”’ was born in 1995 and his interests include
swimming and jogging.

since it will hide nodes that are irrelevant to that
particular root node.

2) Hover Tooltip: To provide the most amount of in-
formation with the least amount of clutter, we chose to
provide a hover-over tooltip for each node. The tooltip
for each node provides additional information about
each person, which includes information encoded into
the visualization, as well as other information the user
chooses to include. For example, a tooltip may contain
a person’s birthdate and spouse, both of which can be
easily deduced from the layout of the tree. The tooltip
may also contain extra information such as a person’s
geographical location, hobbies or interests and medical
history (see Figure 13).

The hover functionality allows the family tree to be
more informational for the user. The details provided
in the tooltips makes the family tree more useful for
analysis, but keeps it clean and uncluttered because it
does not appear unless the user explicitly chooses for it
to.

3) Age Bracket Highlighting: Another feature we imple-
mented is the ability to easily distinguish different age
brackets. We provide the users with a slider that allows
them to highlight nodes of a certain age bracket. The
difference in age is calculated between a node and the
root node. As the user moves the slider towards higher
positive numbers, nodes that are older than the root
node are highlighted. This means that nodes that are
ancestors of the root node get highlighted as the slider
is moved towards higher positive numbers. As the slider
moves, more nodes are highlighted until, eventually, the
entire upper half of the tree is highlighted (see Figure
??). Similarly, if the user moves the slider towards higher
negative numbers, nodes that are younger than the root

(a)

(b)

Fig. 14: The user can choose to highlight nodes that are
older than the root node, within a specific age range.
Figure a) shows what the graph looks like when certain
ancestor nodes are highlighted. Figure b) shows the
slider control for this feature.

node light up. As with the ancestors, the descendent
nodes will all be highlighted as the slider reaches its
limit (see Figure 15).

The slider to show different age brackets showcases
the temporal data trends in the family tree. It is very
easy to see how far in age certain nodes are to the root
node and therefore provides more useful information to
the user that can be used in analysis.

4) Search: An important interactive feature we imple-
mented is a search on each person’s name. As the user
searches for a name, nodes are dynamically highlighted.
For each letter the user types in, if the number of results
decreases, nodes that were previously highlighted are
no longer lit up. This continues until the user is finished
typing their search term and the appropriate nodes are
highlighted, or there are no nodes that qualify, and no
nodes are highlighted. In addition, the number of search
results appears beside the search bar for easy access (see
Figure 16).

The search feature adds a lot of functionality to
the family tree visualization because it allows easier
scalability. Even if there are more nodes in the tree, a
user can easily check if a certain person is in the tree
and can easily find the node if it is. Because what is
needed can be found easily, large family trees are no
longer as big a problem as before for the users.

(a)

(b)

Fig. 15: The user can also choose to highlight nodes
that are younger than the root node, within a specific
age range. Figure a) shows what the graph looks like
when certain descendent nodes are highlighted. Figure
b) shows the slider control for this feature.

Fig. 16: The search functionality is evoked through this
search box. Beside the search box is a quick count of how
many results match that search query.

5) Same Generation Highlighting: In addition to a slider
that highlights nodes of a certain age bracket, we also
implemented the ability to easily view nodes of a par-
ticular generation. This slider works similarly to the age
bracket slider, but as the slider is moved, nodes of each
generation are highlighted based on their distance to the
root node. Starting at zero, as the slider increases, the
nodes closest to the root light up in an outwards manner.
As with the age bracket slider, positive numbers denote
ancestors and negative numbers denote descendents.
When the slider moves towards more positive numbers,
the upper half of the tree is highlighted, and when the
slider moves towards the more negative numbers, the
bottom half of the tree is highlighted (see Figure 17).

The ability to easily see nodes of the same generation
greatly adds to the family tree’s visualization of
temporal data. By highlighting the nodes of the same
generation, it is easy to see patterns in ages among
them. In encoding temporal data, an important aspect is
to show what the age range within a single generation
is, and this slide allows that to be easily determined.

(a)

(b)

Fig. 17: The user can highlight certain nodes of gen-
eration, as determined by its distance from the root
node. Figure a) shows how this looks when an ancestor
generation is highlighted. Figure b) shows the slider
control for this feature.

6) Cone Steepness: A third slider is provided for the
user to decide at which level of steepness the tree
should be displayed. The steepness of the conical shape
determines how spread out the nodes are. The wider the
angle, the easier it is to see each individual node. The
narrower the angle, the easier it is to see more nodes
at once. There is a minimum and maximum limit to the
cone steepness. The layout starts at the higher limit of
steepness, at the most narrow angle and can be changed
to be wider by the slider.

The adjustment of cone steepness allows the family
tree to reduce clutter. If the user wants to focus on a
certain part of the tree, he can increase the angle of
the cone and view fewer nodes to decrease the noise.
Similarly, if the user wants to view more nodes overall,
he can decrease the cone’s angle, and see more of the
tree. This introduces scalability since more nodes can be
better viewed, in a less cluttered way, and allows the
user to gain more information from the tree.

7) Zooming and Repositioning: Additional features that
add to the overall functionality and ease of use of the
family tree are the zooming and repositioning features.
The family tree implementation allows the user to zoom
into or out of the tree as necessary using right click of the
mouse. In addition, the user can interactively reposition
the nodes and the tree overall as per their specifications
by just holding the left click and dragging the image.
The lengths of each of the edges between nodes will stay
the same, as they are determined by the age differences

between the nodes, but the nodes can be moved around
to allow optimal placement as decided by the user.

These two features allow the family tree to be less
cluttered. The user can decide whether he wants to view
many small nodes, or a few very big, spaced-out nodes
based on what aspect of the family tree he is analyzing.
Similarly, the repositioning of the nodes allows the user
to lay out the nodes in a manner he likes at a greater
detail. For example, if once the user has zoomed in
on a particular branch of the tree, he can choose to
reposition the nodes to reduce any clutter he sees. These
features help further the usefulness of the family tree
visualization.

VII. DISCUSSION

This implementation of a family tree visualization is
very effective in showing temporal data, as well as re-
ducing the issue of scalability. By providing a very clean
and appropriate layout, this implementation improves
the information that can be extracted from the tree.
The conical layout easily shows the difference between
the ancestors and descendents of a central root node.
In addition, the lengths of the edges encode the age
differences between any node and the root node, as
well as among other nodes. The circular axes easily
shows the scale for the tree and provide the user an
effective way at measuring the age differences. Finally,
the various different interactive features that have been
implemented strongly show the different ways to visu-
alize the temporal data in the family tree.

Audiences learn much about different types of family
tree visualization and how this implementation is able
to properly encode temporal data. In a nutshell, this
implementation of the family tree visualization is very
effective in solving the problems of appropriately en-
coding temporal data, reducing unnecessary clutter and
addressing the issue of scalability.

VIII. FUTURE WORK

There are many features included in this implementa-
tion of a family tree, but there are several ways it can be
improved.

A. Dynamically add nodes and edges

Currently, the user cannot dynamically add nodes and
edges to the tree. If the user wants a new node added to
the tree, he must add it to the data XML file and reload
the tree. In the future, a very useful feature to implement
is the ability to add people dynamically to the tree. This
will improve the usability of the family tree visualization
greatly.

B. Add pictures for each node

In addition, a family tree could greatly improve by
having pictures for each person. As it is, our imple-
mentation does not include pictures. Aside from it being

useful for users to simply see the various people in the
family, this feature can also be quite useful in anthropo-
logical studies.

C. Lay out nodes geographically
Another feature that will help is the ability to lay out

nodes geographically. If the user provides the appropri-
ate information for each node, a very useful feature to
implement in the future is an easy way to lay out all the
nodes of the tree on a map. By showing where the people
live geographically, the family tree visualization can
further be used in medical and anthropological studies.

IX. CONCLUSION

In conclusion, this implementation of a family tree
visualization successfully encodes temporal data. In ad-
dition, this implementation effectively deals with the
problems of unnecessary clutter, and scalability. The
radial layout of the nodes, centered around one root
node, and the circular axis help the user easily see the
age differences between different nodes. Furthermore,
the various interactive features improve the usability and
functionality of the family tree. Overall, this implemen-
tation is very effective in solving the problems that have
plagued many family trees over the years.

ACKNOWLEDGMENTS

The authors would like to ackowledge the invaluable
input from Professor Maneesh Agrawala, an Associate
Professor in Electrical Engineering and Computer Sci-
ence at the University of California, Berkeley. Our grat-
itude also goes to Jeffrey Michael Heer, the owner and
developer of Prefuse, the software we used to build our
visualization. We would also like to thank the students
of CS294 (Data Visualization) for their feedback and
suggestions.

REFERENCES

[1] S. T. Teoh, “A study on multiple views for tree visualization,”
2007.

[2] G. M. Draper and R. F. Riesenfeld, “Interactive fan charts: A
space-saving technique for genealogical graph exploration,” 2008.

[3] “Paf website,” http://www.progenygenealogy.com/
paf-companion-details.html.

[4] “Myheritage website,” http://myheritage.com.
[5] “Genopro website,” http://www.genopro.com.
[6] J. Heer and D. Boyd, “Vizster: Visualizing online social networks,”

2004.
[7] G. M. Draper and R. F. Riesenfeld, “Interactive fan charts: A

spacesaving technique for genealogical graph exploration,” in
Brigham Young University, 2008.

[8] G. Melanon, G. M. Con, I. Herman, and I. Herman, “Circular
drawings of rooted trees,” 1998.

[9] C. cheng Lin and H. chun Yen, “On balloon drawings of rooted
trees,” pp. 12–14, 2005.

[10] T. M. J. Fruchterman, Edward, and E. M. Reingold, “Graph
drawing by force-directed placement,” 1991.

[11] D. Tunkelang, “A numerical optimization approach to general
graph drawing,” Tech. Rep., 1999.

[12] Wikipedia, “Force-based algorithms (graph drawing) —
wikipedia, the free encyclopedia,” 2010. [Online]. Avail-
able: http://en.wikipedia.org/w/index.php?title=Force-based
algorithms (graph drawing)&oldid=357941495

[13] K.-P. Yee, D. Fisher, R. Dhamija, and M. Hearst, “Animated
exploration of dynamic graphs with radial layout,” Washington,
DC, USA, p. 43, 2001.

[14] “Prefuse website,” http://prefuse.org.

