
Interactive Visualization for Light Transport Matrices

Jiamin Bai∗

The University of California,
Berkeley

Figure 1: A screen capture of proposed visualization tool for Light Transport Matrices. The main window shows a sub light transport matrix
generated from a set of selected light inputs and observed pixels. The value of the element the mouse is pointing to is displayed at an offset
from the mouse pointer. The largest window is the main window and it displays what the user is interested in exploring. The top small multiple
provides an overview for the light transport matrix, the middle multiple provides an overview for the input lights and the bottom multiple
provides an overview on the observed scene lit with the input lights. These small multiples also act as selection tools for the user. The panel
on the far right allows the user to select modes and display parameters.

Abstract

Acquired Light transport matrices are typically large (50 million
entries in 3 channels) and prone to noise. Current tools and tech-
niques to inspect these matrices are rudimental and do not elucidate
structures and patterns in these matrices. In this work, we design
and implement an interactive visual tool that allows the user to in-
teractively explore the data. Multiple windows help the user select
the range of lights and observed pixels to generate sub transport ma-
trices in interactive rates. Zooming, panning and value remapping
is also supported in our implementation in real time. The key chal-
lenge in this work to provide a intuitive tool that enables the user
to explore the large database interactively, reducing both the gulf
of execution and gulf of evaluation. We use OpenGL and graphics
hardware acceleration to render the data in real time.

Keywords: Visualization, Interative, Light Transport Matrices

∗e-mail: bjiamin@eecs.berkeley.edu

1 Introduction

Light transport matrices have recently been introduced to the graph-
ics community as the foundation for image-based rendering [Ng
et al. 2003] and radiometric compensation [Ng et al. 2009]. While
the fidelity of the transport matrix is crucial for accurate render-
ing and compensation, there has not been any tools developed that
facilitates the verification of acquired transport matrices. This is
certainly the case for radiometric compensation where one seeks
to invert the light transport matrix because the inversion process is
very sensitive to small deviations or noise. Visualizing the light
transport matrix is commonly done in Matlab, where one would in-
spect the constructed matrix as an image. As such, selecting regions
and remapping color values are perform through several command
line instructions. This results in a large gulf of execution and evalu-
ation [Norman and Draper 1986]. Mapping the intent of the user to
the commands are not easy even for experienced user. One would
have to first find the exact coordinates and values for remapping.
It is not uncommon for the user to perform several iterations or re-
finements before getting Matlab to display what he wants. Errors



(a) Light Transport View (b) Column View (c) Row View

Figure 2: Here we show 3 possible views the main window supports for exploring the light transport matrix. Notice how layered information
on the small multiple ‘Light Transport’ provide reminders and context to what the user is exploring.

in the matrix are often caused by corrupted input images which are
difficult to locate using Matlab. Other software such as IrfanView
allows rapid viewing of the source images but not High Dynamic
Range composites in matlab’s format. While these HDR input im-
ages are the columns of the transport matrix, extracting them indi-
vidually and inspecting them in Matlab is impractical.

With this in mind, we design and implement a tool that allows the
user to interact with the data, performing a large suite of queries
using intuitive controls with the mouse. The key to a successful
tool would be to provide near instant feedback or updates to the
user’s queries. This is particularly challenging given the large size
of the transport matrix (50 million elements in 3 channels).

2 Related Work

While there has not been work done in the domain of visualiz-
ing transport matrices, there are several that deal with visualizing
large complex high dimensional data such as LifeLines [Plaisant
et al. 1998] and SpotFire [Ahlberg and Shneiderman 1994]. The
mantra for designing these highly successful commercial visualiza-
tion tools is aptly described as: “Overview first, zoom and filter,
then details-on-demand” [Shneiderman 1996].

To provide an overview of the data, these visualizations have a main
window where the data of interest is displayed. Multiple auxiliary
windows provide overviews for the data in specific sub domains.
Panels accompanying the main window provides tools for search-
ing and filtering the data. For data with numerical features, sliders
can be used to efficiently specify the range in which the user is in-
terested in. To this end, the Alphaslider was introduced [Ahlberg
and Shneiderman 1994]. Interactivity, which is crucial to reduce
the gulf of evaluation, is achieved by having immediate and contin-
uous display of results [Ahlberg and Shneiderman 1994]. Smooth
animations are used when exploring the data, either by zooming or
panning, provides context to the user.

In other implementations such as GGobi, multiple windows dis-
playing the same data in different domains allows the user to per-
form domain specific selections (brushing) which are then propa-
gated to the other windows (linking) [Wills 1995]. Brushing and
linking also helps to reduce the gulf of execution as the user can
intuitively select relevant data points efficiently.

To provide more information for complicated data, layering can be
used to superimpose secondary information. It is crucial that this
layering is done in a non-intrusive way [Tufte 1990]. If it is intru-
sive, this additional information will only hinder the ability for the
user to efficiently comprehend the original data.

Using these design principles, we propose a design for our Light
Transport Visualization as shown in Fig. 1.

3 Design

3.1 Main Window

Emulating the success of SpotFire, we will have a main window
where it will display the data of current interest to the user. The
main window will be interactive, allowing the user to select regions
to focus on. Animations will be used during zooming or panning
to provide the user with context and a continual display of results.
During the selection process, the span of the selection is layered
over the data by drawing a bounding box of the selection. When the
selection is confirmed, the bounding box is animated along with the
data and fades away, allowing the user to focus on evaluating the
data thereafter. Secondary information for the data points (color
values) is layered over the data when activated by toggling a key
on the keyboard. Color values for pixels directly under the mouse
is layered over the data at an small offset from the mouse. This
allows fast visual queries as the user will not have to look between
two locations on the screen.

There will be 5 different modes for the main window, each to dis-
play the data in different domains. We show 3 possible views in
Fig. 2.

1. Light Transport Matrix
The current light transport matrix constructed using the set of
selected input lights and observed pixels is displayed.

2. Columns
The selected column of the current light transport matrix is
displayed in the pixel domain. i.e. observed image under the
selected light only.

3. Rows
The selected row of the current light transport matrix is dis-
played in the input light domain. i.e. visualization of the con-
tribution of each light for selected observed pixel.

4. Input
This is just the set of lights that generated the light transport
matrix.

5. Output
This is the observed scene due to illumination from all the
lights.

3.2 Small Multiples

The light transport matrix characterizes the relationship between a
set of lights shining onto a scene (columns of the matrix) and a
set of pixels that measure the light leaving the scene (rows of the
matrix). As such, different sets of lights and pixels will produce



(a) Light Transport (b) Light Input (c) Observed Scene (d) Main Window

Figure 3: Here we show a close up of the small multiples and the main window when we are exploring the Observed Pixels. The red bounding
box shows the selection of input lights and observed pixels that are used to generate the light transport matrix. The yellow bounding box
shows the region that is displayed in the main window.

different light transport matrices. We employ the use of small mul-
tiples to enable the user to create smaller light transport matrices for
closer inspection dynamically and easily. For our purposes we will
have 3 small multiplies namely, ‘Light Transport’, ‘Light input’ and
‘Observed scene’ as illustrated in Fig. 3

3.2.1 Light Transport

In the first small multiple, we display the current light transport ma-
trix that is constructed by the set of input lights and the observed
pixels. This multiple serves three functions; to provide context on
which region the main window is showing, to select regions to zoom
or pan and to select which rows or columns to inspect. In Light
Transport mode, mouse actions will be translated to zooming and
panning for the main window. This allows the user to quickly iden-
tify local regions he wishes to inspect and efficiently execute the
queries. A bounding box is layered over the region that the main
window is displaying. This gives the user a gentle reminder to
which region of the light transport matrix he is inspecting. How-
ever in Columns and Row mode, mouse clicks will be interpreted
as selection for respective columns or rows. In this mode, the user
clicks on the column or row that he is interested in and the main
window will update accordingly. This provides very intuitive range
selection as there is a direct mapping from what you see and want
to the corresponding mouse actions. The corresponding column or
row will also be highlighted to visually remind the user what he is
exploring. Key strokes to increment and decrement the column or
row allows the user to fine tune his selection as well as to efficiently
compare between neighboring columns or rows.

3.2.2 Light Input

In our second small multiple, we display the set of lights that cre-
ated the light transport matrix. In the example used in this paper,
the set of lights used to light up the scene are the pixels from a
projector. Therefore the structure of the set of lights is an image
of the scene with the projector as the center of projection. This
multiple serves two purposes; to show the light that is incident on
the scene and the set of lights that constructed the light transport
matrix shown in the main window. The current selection of lights
used to construct the light transport matrix is displayed by using a
bounding box that is layered over the data. If the display mode for
the main window is ‘Input’, another distinct bounding box will be
layered over the data to provide context to what the main window
is displaying. As it is desired to relight the scene within the visual-
ization to verify hypotheses, this multiple is also a canvas where the
user can modify the intensity of the input lights using a paint brush.

Any changes to the input light is not only displayed in the multiple
but also propagated to the other multiple (observed scene or main
window).

3.2.3 Observed Scene

There are two main functions for this third multiple; to display the
observed scene under the current lighting input and the set of pixels
that are used to construct the light transport matrix shown in the
main window. The current selection of pixels used to construct
the light transport matrix is displayed by a bounding box that is
layered over the data. If the display mode for the main window
is ‘Output’, another distinct bounding box will be layered over the
data to provide context to what the main window is displaying.

3.3 Panel

The panel not only serves to remind the user which state the visu-
alization tool is in, but it also allows the user to specify his queries.
Radio and toggle buttons are used to let the user see the list of op-
tions that is available to him as well as which are the options are are
currently selected or activated. In Fig. 4 we show our implementa-
tion of the panel which we are about to describe.

The panel can be divided into 3 main sections. The top most sec-
tion allows the user to select a mode the main window will operate
in as described in section 3.1. There are a few additional buttons
and information available to the user. Beside the radio button for
‘Light Transport’, there is a update button that computes a new light
transport matrix with the selected input lights and observed pixels.
Beside the ‘Columns’ and ‘Rows’ radio buttons there are informa-
tion panels along with a rewind and forward buttons by the sides.
The information panel displays the current column or row that is
being displayed in the main window. Since this information panel
is specific to the mode, it is faded out when the relevant mode is
not in use. The rewind and forward button allows the user to cycle
through the columns or rows automatically in the main window in
decreasing or increasing order. This will allow the user to quickly
check if any input sample is corrupted or not. A toggle button la-
belled as ‘Gamma’ is the last button for the top section. This button
allows the user to apply a gamma curve when displaying in all the
modes except ‘Light Transport’.

The mid panel controls the selection of input light and observed
pixels as well as paint brush parameters. Radio buttons allow the
user to switch between 2 modes of interaction for the ‘Input Light’
small multiple. When the radio button ‘Paint Input’ is selection, any
clicks to the small multiple is registered as a brush stroke. If ‘Select



Region’ is selected, then mouse actions are registered for light input
selection. A toggle button named ‘Bind Selection’ allows the user
to use the same input light selection for the observed pixel selection.
This will allow the user to create square light transport matrices
where local interactions can be observed. There is also a set of radio
buttons that control the shape of the brush. Brush size is selected by
an Alphaslider. This allows the user to have a continuous range of
brush sizes he can choose. Red, green and blue values for the paint
brush are also selected by 3 separate Alphasliders with color coded
knobs. A small box displays the current color selected for the paint
brush. The color of the box is dynamically updated as the knobs
are moved. This is to allow continual feedback to the user so that
he can visually determine that the color is adequate while he uses
the Alphaslider.

The bottom panel controls the display parameters for the all the
windows. There are 3 toggle buttons that control each color chan-
nel. This allows the user to choose which combinations of the 3
color channels to display or squelch. The toggle button ‘Fixed Ra-
tio’ determines if the separate color channels can be modulated and
scaled differently. If it is turned on, all modifications to any color
channel is propagated to the other channels. The toggle button ‘Ex-
clusion’ determines the method that is used to map the color values
0 to 255 on the data. When it is turned off, the values 0 to 255 is
remapped onto the selected color range. When it is turned on, the
values that are selected in the color range are not excluded from
the display. i.e. if the color range 50 to 100 is selected, then the
other color values are automatically assigned to 0 while the val-
ues 50 to 100 is unaltered. 3 double knob Alphasliders are used
for selecting the color ranges. Values between the 2 bounded ar-
rows (knobs) in each Alphasilder represent the range of values that
are currently being selected. The numerical values for the lowest
and highest values selected are displayed at the respective ends of
the Alphaslider. There is an additional Alphaslider that controls
the overall amplification of the values in all the display windows.
The current value of amplification is also displayed at the top of
the corresponding Alphaslider. All the changes that are made in
the Alphasliders are updated in real-time. This allows a continual
display of data whereby the user can visually observe the effects of
selecting different display parameters. This usually admits the user
to form new insights about the data.

4 Methods

The visualization tool is built using OpenGL. OpenGL is chosen
because it is very fast compared to other toolkits such as Protovis
and it provides easy access to graphics hardware acceleration which
is critical for displaying the amount of data in real-time. OpenGL
is also very suitable because it allows multiple sub-windows to be
displayed easily. Animations for zooms and pans are trivial with
OpenGL as it can be done with simple camera manipulations. Lay-
ering of different objects and data can be easily represented in
OpenGL by the depth of the elements in 3D space. More impor-
tantly, OpenGL is platform independent.

4.1 Viewports

Multiple windows are instantiated in OpenGL as multiple view-
ports. Each viewport will have its own context of controls and ren-
dering parameters. This makes rendering multiple windows with
different data easy in OpenGL. Each viewport has its own camera
which allow for animations that are distinct from the other win-
dows. An orthographic projection is used in our implementation
because it allows different layers of data with the same coordinates
to be layered easily.

Figure 4: Here we show a
close up view of the panel.
The top section allows the
user to select the display mode
for the main window. It is easy
to determine which mode the
main window is in from the
highlighted toggle button. No-
tice that auxiliary options for
the modes are faded out if the
mode is not active. The middle
section allows the user to se-
lect how the mouse actions are
interpreted for the ‘Light In-
put’ multiple. There is a tog-
gle button to allow the user to
apply the same selection to the
observed scene if he wishes.
There are also Alphasliders
where the user can use to ad-
just parameters for the paint
brush. The small box on the
left shows the current color
that is selected for the brush.
The bottom section allows the
user to select display parame-
ters for all the windows. This
can be done using toggle but-
tons which control the chan-
nels and mode of remapping
and Alphasliders which con-
trol the range selected.

4.2 Ploygons

Each data point can be represented as a polygon in OpenGL. Us-
ing polygons is faster than drawing pixels onto the screen buffer
because there is dedicated hardware for doing it and it admits for
animation easily. We can construct an array of polygons arranged
in a grid fashion resembling the arrangement of pixels to form an
image. With an orthographic projection, polygons with the same
coordinates will be mapped to the same point.

While it is tempting to use polygons for rendering all the data in
all the viewports, it is not efficient even with hardware acceleration.
The full light transport matrix has 16 million polygons and that
takes approximately 1 second to render in OpenGL. As such, other
rendering techniques like texture mapping will have to be used to
achieve real-time interactive rates which is crucial in reducing the
gulf of evaluation.

4.3 Texture

Texture mapping is technique in rendering that allows the addition
of detail or surface texture onto polygons. This technique is heavily
employed in computer games to add realism to meshes and appli-
cations such as Adobe Lightroom and Apple Aperture to efficiently
display photograph libraries. Texture mapping is very fast because
the graphics card has a hardware implementation for it. We can
exploit this by storing the light transport matrix as an texture and
mapping the texture onto 1 large polygon. This allows for real-time
rendering for the light transport matrix. To achieve this, we com-
pute the light transport matrix based on the selected input lights and
observed pixels and generate a texture and load it onto the graphics



(a) Normal View (b) Remapped Colors

(c) Excluding Colors (d) Red Channel Only

Figure 5: Here we show how the same data is displayed using different display parameters. (a) has the original data display with an
amplification of 1000. (b) shows the same data with color values 0 to 255 mapped to the range 19 to 85. i.e. what was originally 19 and 85
is now mapped to 0 and 255 respectively; intermediate values are linearly interpolated. (c) shows the same data with color values outside 19
to 85 being mapped to 0. (d) shoes the same data with only the red channel.



card. This process takes approximately 1 second. However, once
this texture is uploaded, interaction with the light transport matrix
will be in real-time.

There are several drawbacks for using this technique. Since each
update to the light transport matrix takes 1 second to complete, in-
teractively changing the light transport matrix becomes very slow.
While this does not occur frequently, it is desired to interactively
change the color values for each element in the light transport ma-
trix when experimenting with different display parameters. Each
texture that is used will have to be copied onto the graphic card’s
memory. A light transport matrix of size 4096 by 4096 takes up
50 megabytes of memory. Since each multiple window has its own
instantiation of textures, the graphics card will run out of memory
quickly and this reduces to speed of rendering to approximately 1
second per frame. Also, there is a maximum limit on the size of
the texture. While this upper limit is not reached in our implemen-
tation, this is a major drawback for scalability as managing multi-
resolution textures efficiently will be challenging.

4.4 Shaders

Shaders are a set of software instructions that are used primarily
for rendering effects with a high degree of flexibility. In OpenGL,
there are 3 kinds of shaders that are supported; vertex shaders, ge-
ometry shaders and fragment shaders. Vertex shaders allows for the
transformation of each 3D point’s position as well as texture coordi-
nates. Geometry shaders allows for removal or addition of vertices.
Fragment shaders allows for calculating the color of individual pix-
els. Since we are interested in real-time color remapping for the
light transport matrix due to different display parameters, we can
use fragment shaders to remove the need to reload a new texture
every time the display parameters change.

We use 3 one-dimensional textures as inputs to the fragment shader
for pixel color remapping. These one-dimensional textures function
as look-up tables. They are each of length 256 and the values stored
in it is the mapping for the value at the corresponding position.
i.e. if the fifth element in the one-dimensional texture is 10, then
the color value 5 will be mapped to 10. Since each color has its
own one-dimensional texture, we can also color map each channel
separately.

Since shading calculations are performed on the graphics hardware,
it is very fast and efficient especially since it is highly parallelizable.
The calculation of these 3 one-dimensional textures are very fast
and since they are very small (256 bytes each), they can be uploaded
to the graphics memory very quickly. This results in real-time color
mapping for the texture when the display parameters are changed.
An example on how changing display parameters for the same data
is demonstrated in Fig. 5.

4.5 Putting it all together

To build the visualization tool, polygons, textures and shaders were
used to render all the data in all display windows. The light trans-
port matrix is rendered with a texture mapped onto a large polygon.
For the small multiple, a smaller texture is calculated and used. Al-
though the same texture data can be used, simultaneously having
2 extremely large textures in different context slows the rendering
time drastically. Other data such as light input and observed pix-
els are rendered using polygons because they are sufficiently fast.
While it is possible to use textures as well for these data, we did
not want to use textures for all the windows as context switching
can be slow. Fragments shaders are used to dynamically change
the display values of the pixels in real-time as the Alphasilder is
used. Radio buttons, toggle buttons and Alphasilder themselves are

rendered using polygons. Text in the visualization tool is rendered
using stoke fonts. Again, texture fonts are avoided so as to mini-
mize context switching for textures.

5 Results

The visualization is built on a MacBook Pro 2.16 Ghz Core 2 Duo,
4 Gigabytes of RAM, ATI Radeon X1600 with 128 Megabytes of
RAM using 1 thread with a screen resolution of 1440 by 850 pixels.
It is able to achieve real-time interactively for zooming, panning,
color remapping, painting, lights animation and region selection.
Light transport matrix computation and updates takes 1 second but
it is done only when the user decides to inspect another light trans-
port matrix.

This visualization has been incorporated into the pipeline for our re-
search. Collaborators are excited about the availability of the visu-
alization and are looking forward to using it. It has thus far allowed
us to quickly and accurately debug our light transport acquisition
process. Through the visualization we have also discovered new
phenomena that would have escaped us otherwise. For example, we
have discovered that there are systematic biases in the camera sen-
sor, producing bandings in the light transport matrix. While these
values are very small, they accumulate via all the columns and can
influence the result for the matrix inverse problem. Also, we ob-
served systematic moire patterns that are present in all input images.
While these patterns appear to be random noise within an input im-
age, an animated sequence in the visualization tool will show that
these patterns persists throughout most of the input images. We can
also now visualize the effects of sub-surface scattering occurring in
the scene. This is characterized by repeated structures in the light
transport matrix. These effects are clearly shown in Fig. 6.

6 Future Work

While this is a big step towards creating a useful light transport ma-
trix visualization, there are still many areas that can be improved.
In this implementation the light sources are from a projector there-
fore allowing intuitive display formats for the input lights. Since
light transport matrices are not limited to such light sources, it is
interesting to think about how to display general light arrays.

Currently, the small multiple ‘Light Transport’ is aliased especially
if the light transport matrix is small. As such, better techniques for
generating such previews will have to be implemented.

Since there is a maximum texture size for the graphics card, it is
also challenging to allow light transport matrices that are larger than
that. One approach would be to dynamically generate textures for
regions of interest. This should also shorten the time to update the
light transport as a much smaller texture will be needed to first show
the overview of the matrix.

Tighter integration can be added so that the user can refer to input
images or go to column or row mode for the element in question
while in light transport mode.

Display parameters are currently implemented as linear scales. It
will be useful to allow non-linear color mapping. This can be effi-
ciently implemented as a curve GUI as per photoshop.

It will be also interesting to develop this into a tool with editing
operations as well. For example, it will be useful to allow users to
correct for systematic biases interactively in the visualization.



(a) Bandings (b) Inconsistent exposures

(c) Subsurface Scattering (d) Moire Patterns

Figure 6: Here we show how our visualization elucidates certain phenomena. (a) shows strong banding across columns. This suggests that
each pixel in the camera sensor produces distinct responses for approximately the same input. (b) shows the light transport matrix with values
remapped into 0 to 2. We observe inconsistent exposures for different images and pixels. (c) shows strong sub-surface scattering effects in
the scene where incoming light (diagonals) are manifested in neighborhood regions. (d) This is a typical input image that has moire patterns
on the walls. While it may appear to be random noise, an animated sequence of inputs will show that these patterns persists through most of
them.



References

AHLBERG, C., AND SHNEIDERMAN, B. 1994. Visual information
seeking: tight coupling of dynamic query filters with starfield
displays. In CHI ’94: Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM, New York, NY,
USA, 313–317.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-
frequncy shadows using non-linear wavelet lighting approxima-
tion. In ACM SIGGRAPH, vol. 22.

NG, T.-T., PAHWA, R. S., BAI, J., QUEK, T. Q. S., AND HAN
TAN, K. 2009. Radiometric compensation using stratified in-
verses. In in Proceedings of IEEE International Conference in
Computer Vision.

NORMAN, D. A., AND DRAPER, S. W. 1986. User Centered Sys-
tem Design; New Perspectives on Human-Computer Interaction.
L. Erlbaum Associates Inc., Hillsdale, NJ, USA.

PLAISANT, C., MUSHLIN, R., SNYDER, A., LI, J., HELLER, D.,
SHNEIDERMAN, B., AND COLORADO, K. P. 1998. Lifelines:
Using visualization to enhance navigation and analysis of patient
records. In In Proceedings of the 1998 American Medical Infor-
matic Association Annual Fall Symposium, 76–80.

SHNEIDERMAN, B. 1996. The eyes have it: A task by data
type taxonomy for information visualizations. Visual Languages,
IEEE Symposium on 0, 336–343.

TUFTE, E. R. 1990. Envisioning Information, 4th printing ed.
Graphics Press, May.

WILLS, G. J. 1995. Visual exploration of large structured datasets.
New Techniques and Trends in Statistics, 237–246.


