
1

TRENDTRACKER: A System for Visualizing
Trending Topics on Twitter

Akshay Kannan, Jeff Patzer, Boaz Avital

L IST OF FIGURES

1 TrendTracker . 6
2 TweetStats . 6
3 Trendistic . 7
4 Monitter . 7
5 First Box Layout 8
6 Second Box Layout 8
7 Third Box Layout 9

I. I NTRODUCTION

Modern web technologies have enabled an abundance of
live data streams on the web, such as social network streams,
financial market data, and streaming live video. While dis-
playing one dynamic stream in a confined space is relatively
easy to do, a major challenge exists when trying to display
multiple streams of data. When confronted with limited space
and multiple streams of data, finding a way to effectively
manage these various streams is non-trivial. Additionally, once
all data has been displayed, the user is burdened with trying
to discern which streams contain interesting information that
they should be investigating.

The current method of dealing with multiple streams often
involves opening each stream in an individual window and
using a window manager to handle them. While this can be
useful, most traditional window managers require a significant
degree of manual user manipulation that makes them unwieldy
and unscalable for large numbers of feeds. As identified by
Kandogan and Shneiderman in the Elastic Windows paper,
manual user interaction with a window manager adds a signif-
icant overhead to task completion [7]. The user has to discern
which stream has interesting information, then drill down into
that data while occluding other data.

Several dynamic window management techniques have been
discussed in literature, however since the window manager is
agnostic to the information being displayed in the windows,it
is difficult for them to decide which fields are important and
why they deserve the user’s attention. By limiting our domain
to Twitter feeds, our goal is to design a more efficient feed
management system that can make interesting information
readily apparent to the user.

We present TRENDTRACKER 1, a system to deal with
multiple dynamic data streams and focus on interesting trends
within those streams. TRENDTRACKER presents the user
with multiple windows in one browser screen, each window
containing Twitter trend information. The windows resize
according to the rate at which that trend is being tweeted at
that moment. Windows quickly grow and shrink according to

which trend is currently being tweeted the most. We chose
twitter trends as our data domain both for their quick rate of
change and ease of access.

TRENDTRACKER is a completely automatic system that
does not require, although allows, user manipulation. It creates
a captivating system for the user to monitor multiple dynamic
data streams and attract the user’s attention to important data
by actively monitoring feeds and changing window sizes. This
allows the user to pick out the most popular trends as they are
actively being tweeted.

II. RELATED WORK

TRENDTRACKER’s main purpose to is effectively display
multiple dynamic feeds of data. To do this it requires a few
methods that focus on different domains. The first method
is the use of an effective windowing algorithm to create
a window for each feed and to autonomously manage the
positioning and layout of the feeds within the confines of the
web browser window. The second method deals with obtaining
and processing the dynamic streams of data from Twitter.
Below, we address current work in these areas.

Bell and Feiner’s window management system described in
their paper ”Dynamic Space Management for User Interfaces”
describes an algorithm that looks for the most efficient way
to tile windows and manage empty space[2]. Their system
provides a way to deal with a more typical desktop and user
interface environment. Their paper provided us with a few
ideas on how to go about implementing a windowing algorithm
including representation of space as rectangles, adding a
rectangle to a layout, and deleting a rectangle from the layout.
Where Bell and Feiner decided to allow for empty space,
TRENDTRACKER uses a tiling approach, allowing windows to
fill the entire browser screen and eliminating any unused space.
This helps to minimize many of the cases for which Bell and
Feiner have to account for in their system. By scaling a box to
have an importance relative to the overall space, we can resize
boxes without having to worry about occlusion, overlap, or
tiling. This simplifies the overall visualization implementation
and appearance.

Another adaptive window management approach from
which we draw is Miah and Alty’s Vanishing Windows
mechanism[9], in which windows are tiled and resized based
on the degree with which the user interacts with them.
Windows that have not been interacted with eventually are
minimized and “vanish” from the screen. TRENDTRACKER

dynamically resizes windows as well, however the size of a
window is determined based on the rate of tweets rather than

2

on user interaction, allowing the system to function effectively
display feeds even with a lack of user interaction.

While several other dynamic window management systems
have been discussed in literature, including the Elastic Win-
dows hierarchical approach [7] and the CUBRICON Intelligent
Window Manager (CIWM) [5], our belief is that users have
grown accustomed to having full control over their window
management, making mainstream adoption of such algorithms
difficult. Furthermore, many modern applications are have
large toolbars, require large working areas, and do not scale
well at lower resolutions, making a tiling system difficult.We
address both of these issues. First, since our system is designed
for passive monitoring rather than live interaction, dynamically
resizing windows will not interfere with any of the users’
operations. Secondly, because we design our windows to have
minimal UI overhead and present only the title of the trending
topic and the relevant tweets, our approach scales well, even
at smaller screen resolutions.

There are a variety of applications and websites that have
attempted to implement systems that allow users to track
trends and stats surrounding Twitter, as this has been and
continues to be a topic of interest. The data domain of Twitter
is somewhat irrelevant, but its dynamic nature and categories
of data interpretation are not. Our system provides information
in the categories of trending topics, individual tweets, and
changing in number of tweets per trend over the past few
moments.

The following three related works of Tweetstats (Fig-
ure 2) [3], Trendistics (Figure 3) [4], and Monitter (Figure
4) [6] all provide a way to look at twitter trends. Tweetstats
provides a word-cloud system that shows current trends and
fifty most popular trends, with popularity encoded by size of
the word. While word clouds are somewhat effective, Gestalt
principles state the human perceptual system is limited in its
ability to discern changes in area and associate them with
a quantifiable value. Trendistics provides good stats abouta
specific trend and a good list of current trends. However, the
system encodes information on a bar graph with percentages
that lack context and change with different trends. Monitter
provides a way to watch columns of trends. It allows for
dynamic data to be updated into the trend and focus more
on the tweets pertaining to the trend, rather than the variety
of trends. These systems all provide different statistics for
dealing with the dynamic nature of trends, however none are
able to effectively display multiple trends at once and encode
the rate of change for that trend at the same time. Rather the
systems provide less information about multiple trends and
cannot handle the large amount of data in the same manner.

The three systems also deal with individual tweets dif-
ferently. Tweetstats does not provide any individual tweets.
Trendistics provides the ability to display tweets for a specific
trend, but requires refresh to update those tweets. Monitter
allows for a similar experience that appears on the Twitter
site itself, allowing a user to see the realtime results for a
specific trend. Monitter updates each trend with tweets at the
same rate however, giving the impression that each trend is
as popular as the other. Neither of these systems are able to
display realtime changes in the number of tweets for that trend.

TRENDTRACKER provides a way to view the realtime results
of a trend and the change in number of tweets for that trend.
This helps to create context between the trends.

From these related works, we see the systems out there al-
low one to either drill down into a single piece of data, or look
at large amounts of data. No system effectively combines the
ability to deal with both at the same time. TRENDTRACKER

provides a way to quickly see many trends and the data for
that trend by combining a changing windowing algorithm not
present in other systems.

III. M ETHODS

Determining the importance of a feed

The importance of a feed is determined by the rate at which
new data is being presented to the user. By this mechanism,
older, stagnating feeds are diminished from the user’s view,
while interesting topics with incoming data are brought to
user’s attention.

Window Layout and Placement

We considered a variety of approaches, including Bell and
Fiener’s overlap minimizing window management approach.
We finally decided on a tiling algorithm that would have no
overlap and fully utilize the entire screen. Unlike traditional
tiling window managers such as Xmonad[11], in which a tiled
layout is created by a sequence of horizontal and vertical
subdivisions and then manually resized by the user, TREND-
TRACKER uses an automated area-driven approach.

Funke describes advantages and disadvantages of a tiled
system in his paper[5]. While a tiling algorithm allows all
information to be fully visible, as windows do not get lost
or covered, the size and number of windows is restricted
by the screen area. Furthermore, it is difficult to size the
windows to optimally fit information. We recognized these
limitations when designing our system. To prevent windows
from becoming too small and making information unreadable,
we establish a hard limit on the minimum and maximum sizes
of windows. Most importantly, tiling window managers are
designed to allow fewer management operations from the user,
which was the primary purpose of our system.

Our algorithm is implemented entirely in Javascript and
works as follows. Importance values of each field are first
normalized across fields by dividing the importance value of
each feed by the total combined importance of all fields.

NormalizedImportance f =

Importance f

∑ Importance
(1)

These normalized importance values now directly corre-
spond to relative areas of fields in relation to the visible
browser window. To allow for optimal placement of feeds and
minimize any significant deviations in the aspect ratio beyond
that of the browser window, our algorithm tries to place an
equal number of rows and columns in the window. We start
by finding the number of columns as the ceiling of the square
root of the boxes.

|columns| = ⌈
√

|boxes|⌉ (2)

3

We take the ceiling such that the number of columns will
always be greater than or equal to the number of rows. Because
the vast majority of standard displays are wider than they are
tall, this prevents any significant deviations from a standard
square-like aspect ratio in the fields. Next, we proceed by
placing as close to an equal number of feeds in each column
as possible. The height of each feed within the column is
determined by the importance of that feed in relation to the
total importance of the entire column, and the width of the
column is determined by the importance of that column in
relation to the combined importance of all the fields.

height f eed =

importance f eed

importancecolumn
∗heightscreen (3)

widthcol =

importancecol

∑ importance
∗widthscreen (4)

In Figure 5, there is an initial box layout with exactly 7
fields, all of which are of equal importance and therefore equal
area. As per the formulas, there are exactly 3 columns in which
boxes are displayed.

In Figure 6, we have a box layout after window 1 (middle-
top) experiences an increase in importance from 1.00 to
2.24 and window 3 (left-center) experiences an increase in
importance from 1.00 to 1.50. Since importance values are
normalized in relation to the total, the areas of the other
boxes decrease to accommodate this change. Because the total
importance of the left and center columns increase, the relative
importance and width of the right column decreases.

In Figure 7, we have a box layout after two additional feeds,
windows 7 and 8, are added to the stream and window 2’s
importance has shrunk from 1 to 0.4. When moused over,
boxes change in color to red, allowing users to focus on fields
of importance and visually separate a particular field of interest
from the rest.

Animation

Changes in feed sizes and positions are smoothed by the
use of animation. Abrupt movements of boxes without any
smoothing detract from the user’s attention and make it
difficult to track individual feeds without forcing the userto
refocus her attention each time boxes are moved.

Initially, we implemented animation by linearly interpolat-
ing changes in size and position at a constant pace each time
importance values change. We attempted modifying this to use
Jquery’s animation API to smooth the transition by gradually
accelerating and decelerating instead of moving at a constant
velocity. However we found that as a result, when two adjacent
feeds were resizing and when one needed to be resized to a
greater degree than the other, the feeds would overlap during
certain parts of the animation, due to uneven velocities causing
one feed to reach a certain point faster than the other. As
a result, we switched back to constant-velocity interpolation,
which allowed all the feeds on the screen to move together at
the same velocity and provided a much more pleasing visual
effect. According to Lok and Feiner, a visual layout that is
pleasing has a large impact on how well it communicates with
those who are interacting with it [8].

IMPLEMENTATION

Pulling Twitter Feeds

We collect our trend data through the Twitter Streaming
API[5]. Our application collects and queues data at a ”Garden-
hose” level, a sampling of public tweets that averages to 15%
of the full public data that Twitter experiences. Through the
use of a PHP implementation of the API called Phirehose[6],
a script collects the JSON encoded streaming information and
writes it to disk as it arrives, rotating file output every 5
seconds. Simultaneously, a consumption script reads thesefiles
and compiles the pertinent trend information.

The consumption routine reads through every tweet looking
for trend information - a single word preceded by a hash tag
(#). If It finds a trend, it updates the the internal list of trending
data. It finds the trend in the trends list, or adds if it does
not exist, and then increases its trend score by a constant
amount of 250 points. Then, for every trend in our internal
representation that was not mentioned in the current tweet,the
trend score is reduced by one point. Trends that have reached
a score of zero points are then pruned from the trends list.

The amount of score to add to a trend for each occurrence is
based on the amount of incoming tweet data that the program
experiences. If too few points are added for each occurrence,
even popular trends can be represented as dying out very
quickly. If too many points are added, even the least active
trends stick around for too long before being pruned. The rate
at which our program collected Twitter data is approximately
60 tweets/sec. At this rate, the addition of 250 points for each
trend occurrence created a pleasing balance.

Determine Box Importances

The importance of a box (jQuery window) is determined
based on the score of a trend. If the score of the trend increased
from the last time Twitter was polled, then the box importance
is increased by a constant amount of 1.3, or if the trend score
decreased then the importance of the window is decreased by
a constant amount of 1.3. The score for a trend is calculated
based of the number of tweets that were tweeted for the trend
over the period of time since the trend was last polled. By
increasing and decreasing our box importance, the size of the
box grows and shrinks accordingly. The speed of box growth
and shrink can be adjusted by increasing or decreasing the
value of 1.3.

Due to our windowing algorithm, it is possible to con-
tinually increase and decrease importance of boxes to the
point where certain boxes completely occlude other boxes.
To counteract this, we have implemented a max box and min
box size. This keeps boxes from disappearing or from taking
over the available window space. The max and min size is
determined by box importance. Rather than giving the window
an absolute area size, we allow the box to reach to a certain
importance and then do not allow it move out of that threshold.
We are essentially bounding the potential importance of boxes
on both ends of the scale.

4

Displaying updates/incoming tweets

New trends and tweets are pulled in through the twitter
phirehose into a temporary file. This file is then parsed into
trends and their corresponding tweets. Those trends are then
assigned to windows based on their scores, such that higher
scores are put in lowered numbered boxes than higher number
boxes. The trends’ file is then updated with new scores and
tweets. The new scores are then used to update the window
importance. This scales the window accordingly. The new
tweets can then be viewed by mousing over a box and
watching new tweets appear at the bottom of the browser
window. This helps to keep the visualization from altering
too much, but also allow the user to view the most up-to-date
tweets for a certain trend.

IV. RESULTS

TRENDTRACKER is useful for investigating twitter trends.
It allows a user to carefully track twitter trends as they are
changing and gain insight into what trends are popular, the
tweets related to the trends, and the degree to which the trend
is being talked about. We offer a scenario to help further
elaborate on the type of analysis and information that is
provided by TRENDTRACKER.

Scenario 1: Marketing Information Analysis

A marketing agent for a large advertising firm has been
instructed to figure out a new strategy for a product. The
strategy needs to be in tune with what people are talking about
and interested in. To begin with the agent begins by looking at
typical surveys that are provided that help to detail what people
are buying, doing, etc. However, the agent finds that this
information is too routine and is already outdated by the time it
reaches their desk. The agent continues to think of ways to tap
into the market’s pulse. They decide that a great new service
that provides instant microblogging, Twitter, might be a great
way to do just that. The agent is concerned about how to find
large amounts of information about what people are talking
about. The agent begins to investigate trending topics, butcan’t
figure out a way to quickly understand what is being talked
about at that moment. At this moment, the agent investigates
TRENDTRACKER and realizes it provides him with a plethora
of up-to-date information surrounding peoples thoughts about
multiple topics at the same time. Additionally, the system is
picking out the most talked about trends, rather than the agent
having to do this work. Armed with this new information and
tool, the agent can craft the new strategy and ad campaign
with more ease and understanding than ever before. The agent
can quickly see peoples unfiltered thoughts about a subject
and what their impressions about something are. It allows for
a new way of brainstorming and advertising development that
can be more targeted and in-touch with the pulse of the market.

Summary

The above example illustrates some key points about our
system. TRENDTRACKER provides trend information quickly,
but more importantly it makes it easy for the user to find

the important information quickly. It saves the user time by
removing a large amount of mental processing that would
otherwise be required. TRENDTRACKER allows for the display
of a large amount of dynamic data all at one time in a small
amount of area. It is completely automatic, which allows the
user to focus on the data and its analysis, and not the operation
of the system.

V. D ISCUSSION

Our system has explored three main points: 1. Dynamic data
should be displayed dynamically. The user can then receive
constant feedback from the application and better understand
the changing nature of the information. The challenge to
overcome is in displaying the information in a way that makes
sense to the user and in not changing on-screen elements too
abruptly or quickly for a user to follow. 2. Draw the user’s
attention to the most important features. If there exists orcan
be devised a quantitative measure of importance for the various
dynamic information being displayed, it is essential that the
user’s attention is guided to the most salient features. Fora
quickly changing dataset this is especially important as the
user will have less time to evaluate on her own the features of
the visualization. Methods of indicating importance can beany
quantitative comparison element such as size, value, or relative
motion. 3. Increase immersion by maximizing screen real
estate usage. Our application fills the entire browser window
and minimizes whitespace. When the high amount of infor-
mation being streamed through application, judiciously and
clearly increasing real estate usage increases the bandwidth of
information passed on to the user.

VI. FUTURE WORK

Clustering and Coloring

Currently, our system places fields on the screen in arbitrary
locations with no intelligent processing on the content of the
tweets themselves. A useful addition would be to encode
color into the category of the tweets, and to cluster similar
tweets together based on their category, such as ”celebrities” or
”current events.” The category of a tweet could be determined
from a cross-lookup on Wikipedia or Google Directory. Due
to the wild variety of types of tweets, this makes it signif-
icantly easier for the user to focus on tweets of a certain
category/color while filtering other information. Furthermore,
users can have the option to click on tweets of a particular
category to show only tweets from that category, which can
in turn be broken into subcategories. For example, clicking
on the ”celebrity” category would only show trending topics
pertaining to celebrities and further subdivide into ”musician”
and ”actor” subcategories.

Zooming

A known limitation with a tiling approach is a hard limit
on the number of fields that can simulataneously be dis-
played on the screen. When displaying too many feeds in a
constrained two-dimensional space, we encounter clutter.A
potential solution to this would be to create a user interface

5

for zooming and panning through twitter feeds, similar to that
used in Benderson and Hollan’s Pad++ [1]. Of course, when
zooming in on a particular region, the user loses visibility
of all other regions that he may be interested in monitoring.
However when coupled with the aforementioned “clustering”
approach, showing a greater level of detail as the user zoom
in, this could be a powerful mechanism for allowing users to
literally “zoom-in” on topics of interest. Another interesting
approach for increasing the number of feeds that can be
displayed on the screen comes from utilizing depth. “The
Task Gallery,” is an example of such a system that uses a 3D
metaphor to manage multiple windows in a virtual space [10].
A similar approach could be employed in TRENDTRACKER’s
tiling mechanism by applying a perspective transform to all
the feeds, placing windows of higher importance closer to the
user’s viewpoint and placing less important windows closerto
the vanishing point on the horizon. While this could potentially
increase clutter, by utilizing a third dimension, this allows for
displaying a larger number of feeds in a user’s workspace.

REFERENCES

[1] Benjamin B. Bederson and James D. Hollan. Pad++: a zooming
graphical interface for exploring alternate interface physics. In UIST
’94: Proceedings of the 7th annual ACM symposium on User interface
software and technology, pages 17–26, New York, NY, USA, 1994.
ACM.

[2] Blaine A. Bell and Steven K. Feiner. Dynamic space management for
user interfaces. InUIST ’00: Proceedings of the 13th annual ACM
symposium on User interface software and technology, pages 239–248,
New York, NY, USA, 2000. ACM.

[3] Damon Cortesi. Tweetstats trends. http://tweetstats.com/, May 2010.
[4] Flaptor. Trendistic. http://trendistic.com/, May 2010.
[5] Douglas J. Funke, Jeannette G. Neal, and Rajendra D. Paul. An approach

to intelligent automated window management.International Journal of
Man-Machine Studies, 38(6):949 – 983, 1993.

[6] Alex Holt. Monitter. http://monitter.com/, May 2010.
[7] Eser Kandogan and Ben Shneiderman. Elastic windows: evaluation

of multi-window operations. InCHI ’97: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 250–257,
New York, NY, USA, 1997. ACM.

[8] Simon Lok, Steven Feiner, and Gary Ngai. Evaluation of visual balance
for automated layout, 2004.

[9] Tunu Miah and James L. Alty. Vanishing windows: an empirical study of
adaptive window management. InProceedings of the third international
conference on Computer-aided design of user interfaces, pages 171–184,
Norwell, MA, USA, 1999. Kluwer Academic Publishers.

[10] George Robertson, Maarten van Dantzich, Daniel Robbins, Mary Cz-
erwinski, Ken Hinckley, Kirsten Risden, David Thiel, and Vadim
Gorokhovsky. The task gallery: a 3d window manager. InCHI ’00:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 494–501, New York, NY, USA, 2000. ACM.

[11] Don Stewart and Spencer Sjanssen. Xmonad. InHaskell ’07: Pro-
ceedings of the ACM SIGPLAN workshop on Haskell workshop, pages
119–119, New York, NY, USA, 2007. ACM.

6

Fig. 1. TrendTracker - The system in action. The windows resize automatically. When mousing over a window you get new a red color to help with focus
and new tweets that are arriving appear at the bottom of the page.

Fig. 2. TweetStats - A current implementation of twitter trendstatistics. This system focuses on histories and uses a wordcloud with word size difference
to encode the popularity of the trend. However current trending topics has same size words.

7

Fig. 3. Trendistic - A current implementation of twitter trendstatistics. This system focuses on a single trend and plotting its pertinent tweets and statistics.
It does not update automatically (requires refresh). It lists other popular trends in a box on the right side of the screen.

Fig. 4. Monitter - A current implementation of twitter trend statistics. This system provides a very similar interface to the one available on the twitter website.
Its advantage is allowing the user to view multiple trends at once. However, trends update tweets at the same time, giving an illusion of equal popularity.

8

Fig. 5. Initial box layout with exactly 7 fields, all of which are of equal importance and equal area

Fig. 6. Box layout after window 1 (middle-top) experiences anincrease in importance from 1.00 to 2.24 and window 3 (left-center) experiences an increase
in importance from 1.00 to 1.50.

9

Fig. 7. Box layout after two additional feeds have been added. Window 7 and 8 have been added, causing window 2’s importanceto decrease from 1 to
0.4. When moused over the boxes change color to red, helping theuser to focus on the field.

