MSS: Cascading Style Sheets for MATLAB Graphics

Timothy J. Wheeler

Abstract—The MATLAB programming environment features a rich suite of tools for scientific computation and data visualization.
MATLAB also provides an interface for accessing and changing most of the properties of the built-in graphics objects. However, this
interface demands that the user write many lines of code to achieve the desired visualization. Also, creating multiple visualizations
with common properties often results in a great deal redundant code. The goal of this project is to create a toolkit, called MATLAB
Style Sheets (MSS), that utilizes ideas from the Cascading Style Sheets to simplify the process of customizing MATLAB graphics.
This report discusses which features of CSS were implemented in pursuit of this goal. The efficacy of the MSS toolkit is demonstrated
with an example. Finally, some of the unimplemented parts of CSS are considered for inclusion in future work.

Index Terms—visualization, MATLAB, Cascading Style Sheets

+

1 INTRODUCTION

MATLAB is a flexible programming environment that featuresia-
teractive command prompt and a high-level programminguagg,
which is geared toward numerical computation. MATLAB algo-p
vides a powerful suite of graphics objects that allows the tescreate
a wide variety of visualizations. The close integration ofnputation
and visualization helps reduce the time spent manipulatatg into
the desired format for display.

Like most visualization software, MATLAB provides a full tsef
commands that automatically construct common visuabmatypes,
such as scatter plots, bar graphs, stacked area graphshlgtough
it is convenient to quickly create a complete visualizatite default
properties are not appropriate for every application. irately, MAT-
LAB provides an extensive low-level graphics API that po®s ac-
cess to nearly every property of a visualization. This AR akso be
used to add interactive behaviors to graphics objects. , Thasiser is
free to create almost any type of visualization imaginalblewever,
the task of transforming MATLAB objects into the desired muttof-
ten results in large amounts of redundant code. SectiorcRsss the
general structure of the MATLAB Graphics API.

A similar situation arises in the realm of web developmertiere
the content of a document is written in (X)HTML and the vispadp-
erties of the content are specified by style rules. While gsiue
to specify these styles in the HTML document itself, it ofteene-
ficial to separate the content of the document from its ptesen.
The key technology for achieving this separation is Caszadityle
Sheets (CSS) [2]. With CSS, the style rules are separated tine
content of the document and placed in a text file called a styeet.

future work on MSS. In particular, MSS only implements a drpat-
tion of the rich CSS visual formatting model. Each additideature
of the visual formatting model that is implemented will maWS&s
significantly more powerful.

2 THE MATLAB GRAPHICS API

MATLAB visualizations can be constructed by manually ciegeach
individual graphics object (e.gaxes, | i ne, pat ch) or by calling
one of the many high-level commands that implement commsu-vi
alization types, such as scatter plots and bar graphs. hereiase,
thef i gur e object forms the canvas upon which the visualization is
displayed, and all of the other graphics objects form a ste@sture
with thef i gur e object as its root.

2.1 Customizing Graphics Objects

Once a visualization is created, the resulting graphiceatbjcan be
customized through an interface that exposes most of thectdj
properties. Each routine that creates a graphics objestnsea unique
number, called the object’s handle, which the user can useféo to
that object. The syntax for obtaining the current value ofapprty is
of the form
val ue = get (handl e, propertyNane)
wherepr oper t yNane is a string that matches the name of a prop-
erty. Similarly, the syntax for changing the value of a prtypés of

CSS rules are applied to groups of HTML elements based on ththe form

types, attributes, and positions in the document tree. &leacCSS
style sheet can be applied to any HTML document. Sectionviges
an overview of how CSS works and why it is useful.

The goal of this project is to develop a toolkit, called MATBA
Style Sheets (MSS), that utilizes the syntax and concep@SS to
facilitate the process of customizing MATLAB visualizat®s How-
ever, it is not possible to implement the entire CSS spetifican a
project of this magnitude. Hence, Section 4 describes wiaiatures
of CSS are most relevant to the existing MATLAB graphics gaya
and how these features are translated into MATLAB concefien,
Section 5 discusses some of the key aspects of how thesecfeane
implemented as a system of MATLAB classes.

set (handl e, propert yNane, val ue)

Using these two commands, the user can change most aspexts of
MATLAB visualization.

2.1.1 Modifying Groups of Objects

In addition to the basic set and get interface, MATLAB pr@sdom-
mands that perform common customization procedures wilieleng
excessive calls teet andget . For instance, suppose the user wants
to set the same property with the same value on a number aftsbje
To accomplish this, the user can gather the handles for dgjelstan

An example is presented in Section 6 to demonstrate therﬁurr%rray, sayhand! es, and modify all of the objects simultaneously by

capabilities of the toolkit, and then Section 7 presentsestaas for

e Timothy J. Wheeler is with the Dept. of Mechanical Enginegri
University of California, Berkeley. E-mail: twheeler@keley.edu

Final project report for Computer Science 294-10: Visuatiian, Spring 2010
semester.

calling
set (handl es, propertyNane, val ue)

Similarly, objects can be constrained to always have theesaatue
for a given property. The syntax for this linking operatisn i

I i nkprop(handl es, propertyNane)

Then, the value is changed for all of the objects by calbeg on of the specification can be applied to any tree-structuredment that
any one of them. Although these commands may simplify sonigvisually rendered.

small examples, the user is still tasked with storing eactulgain the

handl es array. For very large visualizations with many graphics ob3-1 Document Tree and Style Sheets

jects, the likelihood of accidentally missing an objectdiiarincreases. Applying CSS involves two main components—a tree of elesantl
Also, the commands necessary to collect the handles in ay adds a style sheet that determines the values of certain pregdsélonging

more clutter to the source code.

An alternative solution, which avoids keeping track of &k tre-
quired handles, is to set the default value for a propertys Tan be
done at any level of the figure tree. That is, calling

set (handl e, def aul t Propert yNane, val ue)

ensures that any descendentfiahdl e that have the specified prop- H
erty will useval ue by default. This mechanism is a powerful way to
change the properties of many objects with a small amountezfrm
ingful code. However, this approach is limited in three wayst all
properties have a corresponding default value; the mestmaonly
applies to objects of the same type (eaxes); and the mechanism
groups objects based on their position in the figure treeeiGthese
limitations, it is clear that this default-value interfagely applies to
certain special cases.

Another approach is the use thendobj command to retrieve a
group of handles and then cakt or | i nkpr op, as above. The
simplest way to calf i ndobj is as follows:

handl es = fi ndobj (propertyNane, val ue,...)

This command will search the current figure for any graphlgeas
that have the property correspondingpgooper t yName with the
valueval ue. Since all graphics objects have tiiag property, the
user can group objects by thdiag and then easily retrieve them all
with one command. Unfortunately, this mechanism restacggven
graphics object to belong to only ofi@g-group.

to those elements. In particular, a style sheet is a textrdeati that
lists rules of the form:

sel ector {

property: val ue;

ere,sel ect or is a string that specifies which elements of the doc-

ument tree are to be modifiepr oper t y is a string that corresponds
the name of the property to be changed; eadl ue is a string that de-
scribes the desired value of that property. Also, rules neegdmbined
into compact rulesets as follows:

sel ectorl,
sel ector 2,

sel ectorM {
propertyl:
property2:

val uel;
val ue2;

propertyN: val ueN,;

In general, the set of elements selected by the string

sel ectorA, selectorB

is the union of those elements selectedd®l ect or A with those

Although each of these commands can simplify the processssf ¢ sglected bsel ect or B.

tomizing MATLAB graphics, they all have major limitation@ne of

the chief goals of MSS is to provide a more convenient franmewo3.

CSS selectors match elements in the document tree basee efeth
ment type, attributes of the element, or the element’s jposih the
document tree relative to another element. There is alsavensal
selector which matches all elements in the document tree. We give a
brief summery of each type of selector here and refer theerdadhe
CSS specification for more details [2].

for specifying property value pairs. Borrowing from thelreaf web
design, MSS utilizes the syntax of the CSS specification toeste
this goal. Section 4 describes how CSS improves upon thaitpebs
mentioned in this section.

2.2 Positioning Graphics Objects

The MATLAB interface for positioning graphics objects isngile to
define but complex to use. In general, the position of an oligede-
termined by a set of coordinates that refer to a documenfederece
point. The most common example of this is tiees object. The po-
sition of anaxes object is an array of the foriix, y,w, h], where(x,y)
is the absolute position of the lower-left corner of dnees relative
to the lower-left corner of the parent fa gur e or ui panel), and
w andh are the width and height of thexes, respectively. Each of
these variables can be specified as a fixed length or a fractitre
parent’s width and height. Assuming thetes position is specified
in units of pixels, the following code is used to changeakes width
to 300px:

p = get(axesHandl e, Position’);
p(3) = 300;
set (axesHandl e, ’ Position’, p);

This example demonstrates how even the simplest changévésvo
multiple lines of code.

There are a few objects whose positions are specified gtixaiia
For example, the string 'NW’ positionslaegend object in the upper-
left corner of the parerdxes.

3 CSS OVERVIEW

The Cascading Style Sheets (CSS) specification [2] is a dectum
written by the World Wide Web Consortium that defines a progra
ming language, which is used to describe the presentatianstiiuc-
tured document. CSS is most commonly used to describe teerse
tion of web documents written in HTML or XHTML, but the majbyi

1.1 Types of Selectors

e Type selectors are simply the name of the desired elemeat typ

e Attribute selectors modify type selectors as follows:

nytype[attri but e]
nmytype[attri but e=val ue]

The first selector matches all elements that possess thedlesi
attribute. The second selector refines the first by requitiag
the desired attribute have the specified value.

For two special attribute$,Dandcl ass, CSS has a more com-
pact syntax. There can be only one element in a document tree
with a givenl Dvalue. The syntax for theD attribute is

nyt ype#uni quei d
#uni quei d

The first selector matches the element of type ype that has
the | D attribute equal tauni quei d, and the second selector
matches the element wittD=uni quei d. Given a single docu-
ment tree, these two selectors are redundant. Howevegiagpl
these selectors to multiple documents could yeild differen
sults.

The cl ass attribute, on the other hand, does not have to be
unique. Many elements can be in the same class, and a given
element can be in many classes. The special syntax for slasse

myt ype. cl ass1. cl ass2 the right and left padding to 5px, and the bottom padding fbr& last
.classl example sets all four padding dimensions in the followingeor top,
right, bottom, left (i.e., clock-wise).
The first example matches elements of tyge ype that arein ~ Each side of the box model border has a width, color, and

cl ass1 andcl ass2. The second example matches all elestyle. ~ The border-top-w dth, border-right-width,
ments that are icl ass1. bor der - bott om wi dt h, andbor der - | ef t - wi dt h attributes

are nonnegative lengths or percentages. The border catdoutes
e The position-based selectors match elements in the dodumémor der - si de- col or) are specified as a known color name (e.g.,
tree based on descendent-ancestor, parent-child, amagsibl ‘red’) or a hexadecimal representation of a color in RGB spac
lationships. These selectors are of the form (e.qg., #2a3b4c). The border style attributesr(der - si de- styl e)
are specified as by a keyword (e.g., solid, dotted, dashedke L

ab the paddi ng shortcut above, the attributesor der - wi dt h,

a>bhb bor der - col or, andbor der - st yl e are used to specify all four

a+b side simultaneously. For borders, CSS also provides artiawaiali
shortcut,bor der that specifies all of the border properties in one

mmand.

The margin of the box model defines the distance between the bo
der of an element and the borders of its neighbors. Each matgi
tribute (rar gi n- si de) is either a length, a percentage, or the key-
word auta Unlike padding and borders, margins can have negative
values. The interpretation of the margin values dependfemosi-
tioning scheme (see Section 3.2.2 for a general discussidfi2 for

The CSS syntax also supports nearly any combination oftsetec details). The CSS syntax includes a shortcut attribmtegi n that
For example, defines all margins simultaneously.

Here,a andb can by any of the aforementioned type or attribut&°
selectors. The first example matches all elements corrdsmpn
to b that have some ancestor corresponding.tén the second
example, theb elements must have their parent among dhe
elements. The last example, matches arglement that has an
adjacent element (on the left) that matches

a.b.c d#te > f + g.h[iF] Top
Hence, the CSS selector syntax is a powerful and compact vay | ™ Margin (Transparent)
select intricate sets of elements in the document tree. B $peci-
fication also provides for other more advanced selectorstyipat this
report focuses on the selectors described above.

|
|
|
|
|
3.2 Visual Formatting with CSS Left : LmliE L Cangant RE \RBY FM | Right
|
|
|
|
|

TB Border

T Padding

The CSS specification also has a detailed visual formattiogetthat
specifies how to render objects in a given medium (e.g., welvder,
printed page). At the core of this formatting scheme is th& ®8x
model, which is briefly described in Section 3.2.1. Esséypti@ach el-

1]
m

ementis contained in a box that is surrounded by paddingdoerand = e = = —m—— " f ________________]
margins. These boxes of content are then rendered on thebpagd Eotlom

on thedi spl ay andposi ti on attributes. Section 3.2.2 provides == Margin edge

an overview of the CSS layout mechanism. Because the CS8lvisu == [Dorder sdge

formatting model is so extensive, Section 3.2.2 only diseashose Padding edge

features that are relevant to the current version of the M8it. — Confent edge

3.2.1 Box Model

The CSS box model consists of four parts: a content area,impdd
borders, and margin (see Figure 1). The content area isideddry
the element'svi dt h andhei ght attributes. These attributes may be3 2 2 visual Formating Model

explicity specified by the user as a physical length or a peacge of e . . .
the containing block’s content area dimensions. Also,dlaibutes The CSS specification precisely describes a powerful vitaratat-

may have the valuautg in which case the dimensions of the conten%Ing moc_zlel. Describing every aspect of this model—even_ inegal

area are implicity determined by nature of the element’sexanand erms—is beyond the scope of this report (see [2] for de)tdﬂeryce,

the size of the containing element we describe only those features of the model that are mirditke
Around the content area, there is a rectangular area of mddiMSS'

The padding area has the same background as the contenfTaea. The first_ rele_/ant concept s tlpmsitioning_s_,chemewhich specifies
size of the padding is determined by the attribytesidi ng- t op, what algorithm is used to compute the position of the eleménhen

; . : : an element'gosi ti on attribute is set tetatic (the default) orel-
paddi ng-ri ght, paddi ng-bottom and paddi ng-1Ieft, . e > i
which do not have to be equal. provides the shortcut at&ibu tive, the position O.f the.element IS cqmputed accordln’grtbfmz.il
paddi ng to specify all four of these attributes simultaneously. Th ow rules. Ifposi ti on is absoluteor fixed the element’s position

. . ; o ; _ only depends on the containing element (i.e., the elemesg dot in-
behavior of thepaddi ng attribute is illustrated by the following ex teract with its siblings). Finally, iposi t i on is float, the element

Fig. 1. The CSS box model (image taken from [2]).

amples: "floats up” through the normal flow of elements, potentiallgpdac-
sone-sel ector { padding: 10px; } ing some of its siblings. In the sequel, we will focus on thenmal
some-sel ector { padding: 10px 5px; } flow of elements. o _
sone-sel ector { padding: 10px 5px 0; } _In addition to theposi tion attribute, elements also have a
sone-sel ector { padding: 10px 5px 4px 6px; } display attribute that determines how they interact with the posi-

tioning scheme. For example, within the normal flow contett,
The first example sets the padding equal to 10px on all foessiflhe ements can be in Block-formatting contexor aninline-formatting
second example sets the top and bottom padding to 10px ariefthe context Block-formatted elements are positioned vertically,reace
and right padding to 5px. The third example sets the top papgtidpx, directly above the next. On the other hand, inline-fornthélements

are positioned left-to-right. The resulting line of elerteis "broken”
into mutliple lines, so that each line fits within the contaghelement.
Then, each line is treated as a block-formatted element.

The rules of the block- and inline-formatting contexts deii@e
where each element belongs in the normal flow. Elements Wit t

Figure 1). If we useQut er Posi ti on as the content area, then
the empty space arounfti ght | nset +Posi ti on is ambigously
defined by the MATLAB default behavior, rather than the usen
ther hand, if we usd&i ght | nset +Posi ti on as the content area,
labels of varying width make it impossible to accuratelycifyethe

posi ti on attribute set tstaticare then rendered in their computeddimensions of the plot box in terms of the content area, peyldior-

position, while elements with theiposi ti on set torelative are
translated relative to their computed position before egimd). Thus,
relatively positioned elements leave a "gap” in the norn@ai/fwhere
they would have been rendered. The relative translatioert#gs on
the user-specified propertiesp, ri ght ,bott om andl ef t . CSS
specifies rules for resolving conflicts when these dimerssame in-
consistent (e.gl,ef t andri ght both have positive length).

4 APPLYING CSS TO MATLAB GRAPHICS

ders, and margins. For example, suppose one axes has digijle-
y-axis tick labels (e.g., 1, 2, 3) and another axes has mucgeio
y-axis tick labels (e.g., -100.2, -100.4). If we adjust thexes so
that theirTi ght | nset +Posi t i on boxes coincide, the second axes
must have a smaller plot box to make room for the longer labéls
though both of these options lack full user control of thesapkace-
ment, taking theTi ght | nset +Posi ti on box to be the content
area makes it possible to position the axes at the very edgdigf
ure. The ambigous space defineddut er Pr oper t y prevents such

As stated in Sectior??, the general purpose of the MSS toolkit isPlacement.
to implement the powerful features of CSS in MATLAB. For some

CSS functionality, the translation into MATLAB graphicsjebts is
quite natural. However, implementing all of CSS in MATLAB uld

require extensive modification of the graphics API, whicléyond
the scope of this project. The design of MSS presented imepisrt is
an attempt to achieve as much of the power of CSS as possitiieuti
making the toolkit too complex. The following sections dése how
this compromise is carried out in each portion of the probitmain.

4.1 Selecting Groups of Objects

Since MATLAB organizes its graphics objects into a tree, @S
selector syntax provides a natural way to specify groupsraplycs
objects. Conceptually, the properties of MATLAB objectsrespond
to the attributes of CSS elements. The notion of a CSS eletyieais
equivalent to th@ype property of MATLAB graphics objects. How-
ever, the special CSS attributeB andcl ass require more effort to
implement in MATLAB. The MATLAB Tag property is semantically

similar to thel D attribute. Hence, MSS provides the same function-

ality as thel D attribute by restricting th&ag property to be unique.
MSS also implements the CS3 ass concept. Becausel ass is
an important built-in MATLAB function, MSS uses the tertlique
instead. MATLAB graphics objects are equipped with the rod¢h
addTod i que andi sl nCl i que.

«,) Figure 1

File Edit View Insert Tools D

- EIRIEEY

o

140 \,

L)
OuterPosition———"" i \

oo \

i \
TightInset+Position— i, | \

Position

-.u/
(=] o

Y
o

- o

With the modifications described above, MMS implements YPEig. 2. Detail view of the MATLAB axes positioning model. (Image

class (clique), ID (Tag), descendent, child, and nextirgibselectors.
However, MSS does not implement selectors for generabatas,
pseudo-classes, or pseudo-elements. Another differentai MSS
tags and clique names cannot contain hypens.

4.2 Positioning Graphics Objects

Positioning graphics objects in the MATLAB figure window che
a tedious task. While each object can be precisely placedprtt+
cess of computing the correct lotcation is often painstakind repet-
itive. Hence, MSS adds a higher level API, which implemenine
of the CSS visual formatting model and translates the lay@ldw-
level MATLAB coordinates. Because the visual formattingdabis
the most complex part of the CSS specification, MSS only implets
a small portion of the functionality. MSS elements have rimesgoor-
ders, and padding properties that are, for the most parisistemt

with the CSS box model. The only difference is that the MSS box

model does not implement the CSS margin collapsing schepedq2$
§8.3.1). Also, elements in MSS can have display modesdadtk and
inline-block and all position modes are setdtatic This ensures tha
all MSS elements are positioned according to the normal fldesr
One important issue that arises in trying to translate CS8A®-
LAB objects is theTi ght | nset property of axes objects. As shown
in Figure 2, thePosi t on property specifies the location of the plot
box (the green line), andli ght | nset specifies the relationship be-
tween the plot box and the smallest box (the red line) thataios
the axes title, labels, and plot box. Tlat er Posi ti on box (the
yellow line) defines a region of empty space (similar to CS&ipzg)
around theTi ght | nset +Posi ti on box. Given these definitions,
it is not clear which box should be used as the CSS content(seea

t

taken from [1] §10-9.)

4.3 Cascading of Styles

In CSS, there can be many selectors that refer to the sameriem
CSS uses a set of rules to compute the importance and spgaifici
each selector to determine which rules take precedendeoudh this
mechanism may provide more flexibility in how style sheets@m-
bined, it introduces additional complexity that seems tatiaglict the
goal of making it easier to customize MATLAB visualizatiofhere-
fore, in MSS, rules are parsed and applied in the order inhwtiiey
appear in the source file (i.e., any rule that appears lateoearride
or undo previous rules). Also, MSS elements do not inhesitnp-
erties from their ancestors.

IMPLEMENTATION OF MSS
5.1 Integration with Built-In Classes

To make the toolkit easier for beginners to use, MSS is impleed
as a MATLAB package. This package includes various objects
(e.g.,MsS. fi gure and MSS. axes) and package functions (e.g.,
MSS. gcf andMSS. gca) that override the built-in MATLAB com-
mands. Hence, the following code will create a NeiaS. fi gure
rather than a MATLAB figure:

i mport MSS. *
f =figure();

Existing programs can make use of MSS by simply placing one
i mport statment at the beginning of a file.

5.2 The Graphics Tree and the Layout Tree

At the heart of the MSS tookit is theSS. Tr eeNode class. This
class implements the basic functionality of a tree, inecigdimeth-
ods to add children, remove children, and check for parkitd-ce-
lationships. BecausB®BS. Tr eeNode inherits from the MATLAB

6 EXAMPLE

To demonstrate the usefulness of MSS, we show how a MATLAB vi-

sualization can be re-styled to suit different target me@iansider the
simple array of small multiples shown in Figure 3. This figiggen-
erated by the scriptxanpl e. m which is included with MSS. The

handl e class, each node only needs to store references to its pareasic form of the script is
and chilren nodes. Thus, each node contains enough infiommiat

traverse the entire tree. This is particularly useful inlenpenting the If rrEo; T fg(; .
hasDescendent method, which corresponds to the CSS descendent =g !
selector.

0,
Roughly speaking, ead¥SS. f i gur e object consists of two trees % commands to plot the data

of MSS. Tr eeNode objects. The first is the graphics objects tree,
which corresponds to the default tree layout of MATLAB grish

objects. Each of the overload graphics objedtsdur e, axes, Because this image will most likely be projected on a scrée,
li neseri es, andt ext, as well as theyr i d object inherit from figure has a landscape aspect ratio and the background eotodsirk.
MSS. Tr eeNode. Hence, the i gur e is the root, eactaxes is a Figure 4 shows a detailed view of this figure. Vibrant colaes ased
child of thefi gur e, and so on. The primary role of this tree is toto make the plotted line and the x- and y-axes stand out frerback-

f.apply(' presentation.nss’)

facilitate “selecting” elements with CSS selectors.

ground. The grid lines are slightly darker than the plot bakjch

The second tree serves as the network through which paositigerevents them from competing with the plotted line.

and dimensions are transmitted as MSS computes ithwgir e lay-
out. The nodes of this tree aMBS. Box objects that inherit from

MSS. Tr eeNode. The MSS. Box object is responsible for storing

the box model attributes (padding, borders, margins) aptymy the
CSS visual formatting rules.

These two trees are linked together throughNB8. f i gur e and
MBS. axes objects, which each contain a reference th&8S. Box
object. Essentially, the graphics objects relay stylerimtion (e.g.,
width, borders) to the boxes and the boxes set the posititheafraph-
ics objects.

5.3 Enhanced Grid Object

The concept of the MSS toolkit is founded on the idea that MABL
graphics objects are thoroughly customizable. However, MIAT-

LAB support for grid lines on axes leaves much to be desiréurd-
fore, the MSS toolkit attemtps to remedy this problem by fating a
MSS. gri d object, which is a child oMSS. axes. TheMsS. gri d

object draws fully customizable horizontal and verticatidines on
the parent axes with the following properties:

XGid, YGid

XCol or, YCol or

XLi neWei ght, YLi neWi ght
XStyle, YStyle,

The XGri d property takes the values ‘off’ and 'onXCol or is
a MATLAB ColorSpec, XLi neWei ght is a positive scalar, and
XStyle is one of-|--|-.]:. Of course, the respectiv¥-
properties take the same set of values. The example in 8décsbows
theMSS. gri d object in use.

5.4 Parsing Style Sheets

MSS style sheets are plain text files. The entire style shiedsfiead
into a string and is broken into chucks of selectors and datitas.
Unlike CSS, the MSS parsing algorithm does not automayicidise
statements. For instance, if the text

axes > grid {
XCol or: r;
YColor: g

occurs at the end of a file, CSS will interpret this as a waiirfed
ruleset

axes > grid {
XCol or: r;
YCol or: g;
}

MSS, on the other hand, rejects this as invalid syntax. Thig éter-

pretation of the syntax allows thdsS. St yl eSheet object to more
easily parse the text with regular expressions by seardbingpecial
characters{(: ; }).

Fig. 3. Overview of the example figure with the ‘presentation.mss’ style
sheet applied.

Fig. 4. Detail view of the example figure with the ‘presentation.mss’ style
sheet applied.

Figure 5 shows a detail view of the figure after executing the-o
line command
f.apply(’'web. nes’);

This style sheet uses the same layout, but changes the cblthe
elements. Such a style sheet could be used to match the figare t
website’s color scheme.

Anagle (rad)

Fig. 5. Detail view of the example figure with the ‘web.mss’ style sheet
applied.

Figure 6 shows a detail view of the figure wikandout . nss
applied. This style sheet specifies that the figure dimessioatch a
sheet of letter paper in portrait orientation. Here, allocdias been
removed so that the figure can be printed in black and whiteso Al
the text in the figure is displayed in Times New Roman, whicly r&
more suitable for printed media.

=
L

Angle (rad)

Fig. 6. Detail view of the example figure with the ‘handout.mss’ style
sheet applied.

Figure ?? shows a detail view of the figure withaper . nss ap-
plied. This style sheet is similar ttandout . nss in that the colors
are black and white and the fonts have serifs. However, thisdiis
narrow and tall to accommodate the narrow columns of a tworeo
paper. Theaxes objects have theidi spl ay property set tdl ock
to ensure that the small multiples are arrayed vertically.

7 FUTURE WORK
7.1 The MSS Visual Formatting Model

The current version of MSS only implements a primitive stilisfe
the CSS visual formatting model. The most natural additmthe
MSS visual formatting model would be tleosol ut e positioning
scheme. Without this scheme, there are some layouts thatdd6S
not produce. Also, theel ati ve, andf | oat positioning schemes
would make it possible for MSS to achieve the same layout inra-n
ber of ways. While this may seem like unnecessary complettiey
flexibility provided

Currently, MSS does not yet support percentage lengths. drhis-
sion greatly simplifies the CSS layout algorithms (see§])), but it

ngl (1

VEJAVRY

4

1y

Tams 1)

30 51

Iugmbr Velciky [mdis)

30 440

T {3}

Fig. 7. Detail view of the example figure with the ‘paper.mss’ style sheet
applied.

obviously limits the power of MSS layouts. In interactiveswaliza-
tions, lengths specified as percentages adjust accordasgincestor
elements change shape and size. The resulting dynamict)agdied
a fluid layout, can easily adapt to various target media whiéntain-
ing the same structure.

7.2 Collapsing Margins

Due to time constraints, the CSS concept of collapsing margias
omitted from MSS. However, there are number of applicatishere
collapsing margins are indispensible. Consider the exarapbwn
in Figure 8. The#r ed and#bl ue elements have equal, non-auto
margins (indicated by the partially transparent areas)idow sides.
However, because of CSS margin collapsing, the distaneesketthe
two elements is equal to the margin abdtreed and below#bl ue.
This even distribution of space creates a visually appgddiyout that
is difficult to achieve otherwise. It is possible to mimiclsteffect by
specifying a top margin of O fo#bl ue. However, this approach as-
sumes thattbl ue will always be below#r ed. Making sucha priori
assumptions limits the reuse of style sheets and couplgsréisenta-
tion to the structure of the document. Therefore, the celtgpmargin
feature of CSS would enhance the generality of MSS layoutatod

7.3 Text Box Object

Another useful addition to the MSS toolkit would be a text lodnject.
That is, an object that displays text on a figure and behavesréc
ing to the CSS box model. The existing MATLABext objects are
absolutely positioned with respect to a parares, because they are
designed to annotate tlhexes.

8 CONCLUSIONS

MATLAB is a useful tool for creating visualizations, becaus sup-
ports intense numerical computation (i.e., “data wranmgjlinsimple
creation of common chart types, and thorough customizaifaie
primitive graphics objects. The goal of this project is towvelep a
mechanism that achieves a high degree of customizatiore \akdid-
ing a lot of redundant, tedious coding. Of course, there ameymvays
to build upon MATLAB's low-level graphics API to create a nean-
tuitive interface, but CSS provides a consistent, welleainented sys-
tem of powerful tools that have proven their usefulness exrdalm
of web development. The MSS toolkit is a first attempt at kirigg
the power and logic of CSS to bear on the problem of customizin
MATLAB graphics. Although the current version implement®agh
of CSS to demonstrate the usefulness of the concept and @ieat
ple visualizations, implementing more of the CSS standaiidagd
significant value to the MSS toolkit.

Fig. 8. A simple example of margin collapsing. Note that the two mar-
gins have collapsed into one purple area.

REFERENCES

[1] The MathWorks.MATLAB 7 Documentation: MATLAB Graphjc&010.

[2] World Wide Web ConsortiumCascading Style Sheets Level 2 Revision 1
(CSS 2.1) Specification: W3C Candidate Recommendation i8riger
2009

