
MSS: Cascading Style Sheets for MATLAB Graphics

Timothy J. Wheeler

Abstract—The MATLAB programming environment features a rich suite of tools for scientific computation and data visualization.
MATLAB also provides an interface for accessing and changing most of the properties of the built-in graphics objects. However, this
interface demands that the user write many lines of code to achieve the desired visualization. Also, creating multiple visualizations
with common properties often results in a great deal redundant code. The goal of this project is to create a toolkit, called MATLAB
Style Sheets (MSS), that utilizes ideas from the Cascading Style Sheets to simplify the process of customizing MATLAB graphics.
This report discusses which features of CSS were implemented in pursuit of this goal. The efficacy of the MSS toolkit is demonstrated
with an example. Finally, some of the unimplemented parts of CSS are considered for inclusion in future work.

Index Terms—visualization, MATLAB, Cascading Style Sheets

1 INTRODUCTION

MATLAB is a flexible programming environment that features an in-
teractive command prompt and a high-level programming language,
which is geared toward numerical computation. MATLAB also pro-
vides a powerful suite of graphics objects that allows the user to create
a wide variety of visualizations. The close integration of computation
and visualization helps reduce the time spent manipulatingdata into
the desired format for display.

Like most visualization software, MATLAB provides a full set of
commands that automatically construct common visualization types,
such as scatter plots, bar graphs, stacked area graphs, etc.Although
it is convenient to quickly create a complete visualization, the default
properties are not appropriate for every application. Fortunately, MAT-
LAB provides an extensive low-level graphics API that provides ac-
cess to nearly every property of a visualization. This API can also be
used to add interactive behaviors to graphics objects. Thus, the user is
free to create almost any type of visualization imaginable.However,
the task of transforming MATLAB objects into the desired output of-
ten results in large amounts of redundant code. Section 2 discusses the
general structure of the MATLAB Graphics API.

A similar situation arises in the realm of web development, where
the content of a document is written in (X)HTML and the visualprop-
erties of the content are specified by style rules. While it possible
to specify these styles in the HTML document itself, it oftenbene-
ficial to separate the content of the document from its presentation.
The key technology for achieving this separation is Cascading Style
Sheets (CSS) [2]. With CSS, the style rules are separated from the
content of the document and placed in a text file called a stylesheet.
CSS rules are applied to groups of HTML elements based on their
types, attributes, and positions in the document tree. Hence, a CSS
style sheet can be applied to any HTML document. Section 2 provides
an overview of how CSS works and why it is useful.

The goal of this project is to develop a toolkit, called MATLAB
Style Sheets (MSS), that utilizes the syntax and concepts ofCSS to
facilitate the process of customizing MATLAB visualizations. How-
ever, it is not possible to implement the entire CSS specification in a
project of this magnitude. Hence, Section 4 describes whichfeatures
of CSS are most relevant to the existing MATLAB graphics paradigm
and how these features are translated into MATLAB concepts.Then,
Section 5 discusses some of the key aspects of how these features are
implemented as a system of MATLAB classes.

An example is presented in Section 6 to demonstrate the current
capabilities of the toolkit, and then Section 7 presents some ideas for

• Timothy J. Wheeler is with the Dept. of Mechanical Engineering,
University of California, Berkeley. E-mail: twheeler@berkeley.edu

Final project report for Computer Science 294-10: Visualization, Spring 2010
semester.

future work on MSS. In particular, MSS only implements a small por-
tion of the rich CSS visual formatting model. Each additional feature
of the visual formatting model that is implemented will makeMSS
significantly more powerful.

2 THE MATLAB GRAPHICS API

MATLAB visualizations can be constructed by manually creating each
individual graphics object (e.g.,axes, line, patch) or by calling
one of the many high-level commands that implement common visu-
alization types, such as scatter plots and bar graphs. In either case,
thefigure object forms the canvas upon which the visualization is
displayed, and all of the other graphics objects form a tree-structure
with thefigure object as its root.

2.1 Customizing Graphics Objects

Once a visualization is created, the resulting graphics objects can be
customized through an interface that exposes most of the object’s
properties. Each routine that creates a graphics object returns a unique
number, called the object’s handle, which the user can use torefer to
that object. The syntax for obtaining the current value of a property is
of the form

value = get(handle,propertyName)

wherepropertyName is a string that matches the name of a prop-
erty. Similarly, the syntax for changing the value of a property is of
the form

set(handle,propertyName,value)

Using these two commands, the user can change most aspects ofa
MATLAB visualization.

2.1.1 Modifying Groups of Objects

In addition to the basic set and get interface, MATLAB provides com-
mands that perform common customization procedures while avoiding
excessive calls toset andget. For instance, suppose the user wants
to set the same property with the same value on a number of objects.
To accomplish this, the user can gather the handles for each object in
array, sayhandles, and modify all of the objects simultaneously by
calling

set(handles,propertyName,value)

Similarly, objects can be constrained to always have the same value
for a given property. The syntax for this linking operation is

linkprop(handles,propertyName)

Then, the value is changed for all of the objects by callingset on
any one of them. Although these commands may simplify some
small examples, the user is still tasked with storing each handle in the
handles array. For very large visualizations with many graphics ob-
jects, the likelihood of accidentally missing an object handle increases.
Also, the commands necessary to collect the handles in an array adds
more clutter to the source code.

An alternative solution, which avoids keeping track of all the re-
quired handles, is to set the default value for a property. This can be
done at any level of the figure tree. That is, calling

set(handle,defaultPropertyName,value)

ensures that any descendents ofhandle that have the specified prop-
erty will usevalue by default. This mechanism is a powerful way to
change the properties of many objects with a small amount of mean-
ingful code. However, this approach is limited in three ways: not all
properties have a corresponding default value; the mechanism only
applies to objects of the same type (e.g.,axes); and the mechanism
groups objects based on their position in the figure tree. Given these
limitations, it is clear that this default-value interfaceonly applies to
certain special cases.

Another approach is the use thefindobj command to retrieve a
group of handles and then callset or linkprop, as above. The
simplest way to callfindobj is as follows:

handles = findobj(propertyName,value,...)

This command will search the current figure for any graphics objects
that have the property corresponding topropertyName with the
valuevalue. Since all graphics objects have theTag property, the
user can group objects by theirTag and then easily retrieve them all
with one command. Unfortunately, this mechanism restrictsa given
graphics object to belong to only oneTag-group.

Although each of these commands can simplify the process of cus-
tomizing MATLAB graphics, they all have major limitations.One of
the chief goals of MSS is to provide a more convenient framework
for specifying property value pairs. Borrowing from the realm of web
design, MSS utilizes the syntax of the CSS specification to achieve
this goal. Section 4 describes how CSS improves upon the techniques
mentioned in this section.

2.2 Positioning Graphics Objects
The MATLAB interface for positioning graphics objects is simple to
define but complex to use. In general, the position of an object is de-
termined by a set of coordinates that refer to a documented reference
point. The most common example of this is theaxes object. The po-
sition of anaxes object is an array of the form[x,y,w,h], where(x,y)
is the absolute position of the lower-left corner of theaxes relative
to the lower-left corner of the parent (afigure or uipanel), and
w andh are the width and height of theaxes, respectively. Each of
these variables can be specified as a fixed length or a fractionof the
parent’s width and height. Assuming thataxes position is specified
in units of pixels, the following code is used to change theaxeswidth
to 300px:

p = get(axesHandle,’Position’);
p(3) = 300;
set(axesHandle,’Position’,p);

This example demonstrates how even the simplest change involves
multiple lines of code.

There are a few objects whose positions are specified qualitatively.
For example, the string ’NW’ positions alegend object in the upper-
left corner of the parentaxes.

3 CSS OVERVIEW

The Cascading Style Sheets (CSS) specification [2] is a document
written by the World Wide Web Consortium that defines a program-
ming language, which is used to describe the presentation ofa struc-
tured document. CSS is most commonly used to describe the presenta-
tion of web documents written in HTML or XHTML, but the majority

of the specification can be applied to any tree-structured document that
is visually rendered.

3.1 Document Tree and Style Sheets
Applying CSS involves two main components—a tree of elements and
a style sheet that determines the values of certain properties belonging
to those elements. In particular, a style sheet is a text document that
lists rules of the form:

selector {
property: value;

}

Here,selector is a string that specifies which elements of the doc-
ument tree are to be modified;property is a string that corresponds
the name of the property to be changed; andvalue is a string that de-
scribes the desired value of that property. Also, rules may be combined
into compact rulesets as follows:

selector1,
selector2,
...
selectorM {

property1: value1;
property2: value2;
...
propertyN: valueN;

}

In general, the set of elements selected by the string

selectorA, selectorB

is the union of those elements selected byselectorA with those
selected byselectorB.

3.1.1 Types of Selectors

CSS selectors match elements in the document tree based on the ele-
ment type, attributes of the element, or the element’s position in the
document tree relative to another element. There is also a universal
selector* which matches all elements in the document tree. We give a
brief summery of each type of selector here and refer the reader to the
CSS specification for more details [2].

• Type selectors are simply the name of the desired element type.

• Attribute selectors modify type selectors as follows:

mytype[attribute]
mytype[attribute=value]

The first selector matches all elements that possess the desired
attribute. The second selector refines the first by requiringthat
the desired attribute have the specified value.

For two special attributes,ID andclass, CSS has a more com-
pact syntax. There can be only one element in a document tree
with a givenID value. The syntax for theID attribute is

mytype#uniqueid
#uniqueid

The first selector matches the element of typemytype that has
the ID attribute equal touniqueid, and the second selector
matches the element withID=uniqueid. Given a single docu-
ment tree, these two selectors are redundant. However, applying
these selectors to multiple documents could yeild different re-
sults.

The class attribute, on the other hand, does not have to be
unique. Many elements can be in the same class, and a given
element can be in many classes. The special syntax for classes is

mytype.class1.class2
.class1

The first example matches elements of typemytype that are in
class1 andclass2. The second example matches all ele-
ments that are inclass1.

• The position-based selectors match elements in the document
tree based on descendent-ancestor, parent-child, and sibling re-
lationships. These selectors are of the form

a b
a > b
a + b

Here,a andb can by any of the aforementioned type or attribute
selectors. The first example matches all elements corresponding
to b that have some ancestor corresponding toa. In the second
example, theb elements must have their parent among thea
elements. The last example, matches anyb element that has an
adjacent element (on the left) that matchesa.

The CSS syntax also supports nearly any combination of selectors.
For example,

a.b.c d#e > f + g.h[i=j]

Hence, the CSS selector syntax is a powerful and compact way to
select intricate sets of elements in the document tree. The CSS speci-
fication also provides for other more advanced selector types, but this
report focuses on the selectors described above.

3.2 Visual Formatting with CSS
The CSS specification also has a detailed visual formatting model that
specifies how to render objects in a given medium (e.g., web browser,
printed page). At the core of this formatting scheme is the CSS box
model, which is briefly described in Section 3.2.1. Essentially, each el-
ement is contained in a box that is surrounded by padding, borders, and
margins. These boxes of content are then rendered on the pagebased
on thedisplay andposition attributes. Section 3.2.2 provides
an overview of the CSS layout mechanism. Because the CSS visual
formatting model is so extensive, Section 3.2.2 only discusses those
features that are relevant to the current version of the MSS toolkit.

3.2.1 Box Model

The CSS box model consists of four parts: a content area, padding,
borders, and margin (see Figure 1). The content area is described by
the element’swidth andheight attributes. These attributes may be
explicity specified by the user as a physical length or a percentage of
the containing block’s content area dimensions. Also, these attributes
may have the valueauto, in which case the dimensions of the content
area are implicity determined by nature of the element’s content and
the size of the containing element.

Around the content area, there is a rectangular area of padding.
The padding area has the same background as the content area.The
size of the padding is determined by the attributespadding-top,
padding-right, padding-bottom and padding-left,
which do not have to be equal. provides the shortcut attribute
padding to specify all four of these attributes simultaneously. The
behavior of thepadding attribute is illustrated by the following ex-
amples:

some-selector { padding: 10px; }
some-selector { padding: 10px 5px; }
some-selector { padding: 10px 5px 0; }
some-selector { padding: 10px 5px 4px 6px; }

The first example sets the padding equal to 10px on all four sides. The
second example sets the top and bottom padding to 10px and theleft
and right padding to 5px. The third example sets the top padding 10px,

the right and left padding to 5px, and the bottom padding to 0.The last
example sets all four padding dimensions in the following order: top,
right, bottom, left (i.e., clock-wise).

Each side of the box model border has a width, color, and
style. The border-top-width, border-right-width,
border-bottom-width, andborder-left-width attributes
are nonnegative lengths or percentages. The border color attributes
(border-side-color) are specified as a known color name (e.g.,
‘red’) or a hexadecimal representation of a color in RGB space
(e.g., #2a3b4c). The border style attributes (border-side-style)
are specified as by a keyword (e.g., solid, dotted, dashed). Like
the padding shortcut above, the attributesborder-width,
border-color, andborder-style are used to specify all four
side simultaneously. For borders, CSS also provides an additional
shortcut,border that specifies all of the border properties in one
command.

The margin of the box model defines the distance between the bor-
der of an element and the borders of its neighbors. Each margin at-
tribute (margin-side) is either a length, a percentage, or the key-
word auto. Unlike padding and borders, margins can have negative
values. The interpretation of the margin values depends on the posi-
tioning scheme (see Section 3.2.2 for a general discussion and [2] for
details). The CSS syntax includes a shortcut attributemargin that
defines all margins simultaneously.

Fig. 1. The CSS box model (image taken from [2]).

3.2.2 Visual Formating Model

The CSS specification precisely describes a powerful visualformat-
ting model. Describing every aspect of this model—even in general
terms—is beyond the scope of this report (see [2] for details). Hence,
we describe only those features of the model that are mimicked by
MSS.

The first relevant concept is thepositioning scheme, which specifies
what algorithm is used to compute the position of the elements. When
an element’sposition attribute is set tostatic (the default) orrel-
ative, the position of the element is computed according thenormal
flow rules. Ifposition is absoluteor fixed, the element’s position
only depends on the containing element (i.e., the element does not in-
teract with its siblings). Finally, ifposition is float, the element
”floats up” through the normal flow of elements, potentially displac-
ing some of its siblings. In the sequel, we will focus on the normal
flow of elements.

In addition to theposition attribute, elements also have a
display attribute that determines how they interact with the posi-
tioning scheme. For example, within the normal flow context,el-
ements can be in ablock-formatting contextor an inline-formatting
context. Block-formatted elements are positioned vertically, each one
directly above the next. On the other hand, inline-formatted elements

are positioned left-to-right. The resulting line of elements is ”broken”
into mutliple lines, so that each line fits within the containing element.
Then, each line is treated as a block-formatted element.

The rules of the block- and inline-formatting contexts determine
where each element belongs in the normal flow. Elements with their
position attribute set tostaticare then rendered in their computed
position, while elements with theirposition set to relative are
translated relative to their computed position before rendering. Thus,
relatively positioned elements leave a ”gap” in the normal flow, where
they would have been rendered. The relative translation dependes on
the user-specified propertiestop, right, bottom, andleft. CSS
specifies rules for resolving conflicts when these dimensions are in-
consistent (e.g.,left andright both have positive length).

4 APPLYING CSS TO MATLAB GRAPHICS

As stated in Section??, the general purpose of the MSS toolkit is
to implement the powerful features of CSS in MATLAB. For some
CSS functionality, the translation into MATLAB graphics objects is
quite natural. However, implementing all of CSS in MATLAB would
require extensive modification of the graphics API, which isbeyond
the scope of this project. The design of MSS presented in thisreport is
an attempt to achieve as much of the power of CSS as possible without
making the toolkit too complex. The following sections describe how
this compromise is carried out in each portion of the problemdomain.

4.1 Selecting Groups of Objects

Since MATLAB organizes its graphics objects into a tree, theCSS
selector syntax provides a natural way to specify groups of graphics
objects. Conceptually, the properties of MATLAB objects correspond
to the attributes of CSS elements. The notion of a CSS elementtype is
equivalent to theType property of MATLAB graphics objects. How-
ever, the special CSS attributesID andclass require more effort to
implement in MATLAB. The MATLABTag property is semantically
similar to theID attribute. Hence, MSS provides the same function-
ality as theID attribute by restricting theTag property to be unique.
MSS also implements the CSSclass concept. Becauseclass is
an important built-in MATLAB function, MSS uses the termclique
instead. MATLAB graphics objects are equipped with the methods
addToClique andisInClique.

With the modifications described above, MMS implements type,
class (clique), ID (Tag), descendent, child, and next-sibling selectors.
However, MSS does not implement selectors for general attributes,
pseudo-classes, or pseudo-elements. Another difference is that MSS
tags and clique names cannot contain hypens.

4.2 Positioning Graphics Objects

Positioning graphics objects in the MATLAB figure window canbe
a tedious task. While each object can be precisely placed, the pro-
cess of computing the correct lotcation is often painstaking and repet-
itive. Hence, MSS adds a higher level API, which implements some
of the CSS visual formatting model and translates the layoutto low-
level MATLAB coordinates. Because the visual formatting model is
the most complex part of the CSS specification, MSS only implements
a small portion of the functionality. MSS elements have margins, bor-
ders, and padding properties that are, for the most part, consistent
with the CSS box model. The only difference is that the MSS box
model does not implement the CSS margin collapsing scheme (see [2]
§8.3.1). Also, elements in MSS can have display modes ofblockand
inline-block, and all position modes are set tostatic. This ensures that
all MSS elements are positioned according to the normal flow rules.

One important issue that arises in trying to translate CSS toMAT-
LAB objects is theTightInset property of axes objects. As shown
in Figure 2, thePositon property specifies the location of the plot
box (the green line), andTightInset specifies the relationship be-
tween the plot box and the smallest box (the red line) that contains
the axes title, labels, and plot box. TheOuterPosition box (the
yellow line) defines a region of empty space (similar to CSS padding)
around theTightInset+Position box. Given these definitions,
it is not clear which box should be used as the CSS content area(see

Figure 1). If we useOuterPosition as the content area, then
the empty space aroundTightInset+Position is ambigously
defined by the MATLAB default behavior, rather than the user.On
ther hand, if we useTightInset+Position as the content area,
labels of varying width make it impossible to accurately specify the
dimensions of the plot box in terms of the content area, padding, bor-
ders, and margins. For example, suppose one axes has single-digit
y-axis tick labels (e.g., 1, 2, 3) and another axes has much longer
y-axis tick labels (e.g., -100.2, -100.4). If we adjust these axes so
that theirTightInset+Positionboxes coincide, the second axes
must have a smaller plot box to make room for the longer labels. Al-
though both of these options lack full user control of the axes place-
ment, taking theTightInset+Position box to be the content
area makes it possible to position the axes at the very edge ofa fig-
ure. The ambigous space defined byOuterProperty prevents such
placement.

Fig. 2. Detail view of the MATLAB axes positioning model. (Image
taken from [1] §10-9.)

4.3 Cascading of Styles
In CSS, there can be many selectors that refer to the same element.
CSS uses a set of rules to compute the importance and specificity of
each selector to determine which rules take precedence. Although this
mechanism may provide more flexibility in how style sheets are com-
bined, it introduces additional complexity that seems to contradict the
goal of making it easier to customize MATLAB visualizations. There-
fore, in MSS, rules are parsed and applied in the order in which they
appear in the source file (i.e., any rule that appears later can override
or undo previous rules). Also, MSS elements do not inherit any prop-
erties from their ancestors.

5 IMPLEMENTATION OF MSS
5.1 Integration with Built-In Classes
To make the toolkit easier for beginners to use, MSS is implemented
as a MATLAB package. This package includes various objects
(e.g., MSS.figure and MSS.axes) and package functions (e.g.,
MSS.gcf andMSS.gca) that override the built-in MATLAB com-
mands. Hence, the following code will create a newMSS.figure
rather than a MATLAB figure:

import MSS.*
f = figure();

Existing programs can make use of MSS by simply placing one
import statment at the beginning of a file.

5.2 The Graphics Tree and the Layout Tree
At the heart of the MSS tookit is theMSS.TreeNode class. This
class implements the basic functionality of a tree, including meth-
ods to add children, remove children, and check for parent-child re-
lationships. BecauseMSS.TreeNode inherits from the MATLAB
handle class, each node only needs to store references to its parent
and chilren nodes. Thus, each node contains enough information to
traverse the entire tree. This is particularly useful in implementing the
hasDescendentmethod, which corresponds to the CSS descendent
selector.

Roughly speaking, eachMSS.figure object consists of two trees
of MSS.TreeNode objects. The first is the graphics objects tree,
which corresponds to the default tree layout of MATLAB graphics
objects. Each of the overload graphics objects (figure, axes,
lineseries, andtext, as well as thegrid object inherit from
MSS.TreeNode. Hence, thefigure is the root, eachaxes is a
child of thefigure, and so on. The primary role of this tree is to
facilitate “selecting” elements with CSS selectors.

The second tree serves as the network through which positions
and dimensions are transmitted as MSS computes thefigure lay-
out. The nodes of this tree areMSS.Box objects that inherit from
MSS.TreeNode. The MSS.Box object is responsible for storing
the box model attributes (padding, borders, margins) and applying the
CSS visual formatting rules.

These two trees are linked together through theMSS.figure and
MSS.axes objects, which each contain a reference to aMSS.Box
object. Essentially, the graphics objects relay style information (e.g.,
width, borders) to the boxes and the boxes set the position ofthe graph-
ics objects.

5.3 Enhanced Grid Object
The concept of the MSS toolkit is founded on the idea that MATLAB
graphics objects are thoroughly customizable. However, the MAT-
LAB support for grid lines on axes leaves much to be desired. There-
fore, the MSS toolkit attemtps to remedy this problem by providing a
MSS.grid object, which is a child ofMSS.axes. TheMSS.grid
object draws fully customizable horizontal and vertical grid lines on
the parent axes with the following properties:

XGrid, YGrid
XColor, YColor
XLineWeight, YLineWeight
XStyle, YStyle,

The XGrid property takes the values ‘off’ and ’on’,XColor is
a MATLAB ColorSpec, XLineWeight is a positive scalar, and
XStyle is one of -|--|-.|:. Of course, the respectiveY-
properties take the same set of values. The example in Section 6 shows
theMSS.grid object in use.

5.4 Parsing Style Sheets
MSS style sheets are plain text files. The entire style sheet file is read
into a string and is broken into chuncks of selectors and declarations.
Unlike CSS, the MSS parsing algorithm does not automatically close
statements. For instance, if the text

axes > grid {
XColor: r;
YColor: g

occurs at the end of a file, CSS will interpret this as a well-formed
ruleset

axes > grid {
XColor: r;
YColor: g;

}

MSS, on the other hand, rejects this as invalid syntax. This strict inter-
pretation of the syntax allows theMSS.StyleSheet object to more
easily parse the text with regular expressions by searchingfor special
characters ({ : ; }).

6 EXAMPLE

To demonstrate the usefulness of MSS, we show how a MATLAB vi-
sualization can be re-styled to suit different target media. Consider the
simple array of small multiples shown in Figure 3. This figureis gen-
erated by the scriptexample.m, which is included with MSS. The
basic form of the script is

import MSS.*
f = figure();

% commands to plot the data

f.apply(’presentation.mss’)

Because this image will most likely be projected on a screen,the
figure has a landscape aspect ratio and the background colorsare dark.
Figure 4 shows a detailed view of this figure. Vibrant colors are used
to make the plotted line and the x- and y-axes stand out from the back-
ground. The grid lines are slightly darker than the plot box,which
prevents them from competing with the plotted line.

Fig. 3. Overview of the example figure with the ‘presentation.mss’ style
sheet applied.

Fig. 4. Detail view of the example figure with the ‘presentation.mss’ style
sheet applied.

Figure 5 shows a detail view of the figure after executing the one-
line command

f.apply(’web.mss’);

This style sheet uses the same layout, but changes the colorsof the
elements. Such a style sheet could be used to match the figure to a
website’s color scheme.

Fig. 5. Detail view of the example figure with the ‘web.mss’ style sheet
applied.

Figure 6 shows a detail view of the figure withhandout.mss
applied. This style sheet specifies that the figure dimensions match a
sheet of letter paper in portrait orientation. Here, all color has been
removed so that the figure can be printed in black and white. Also,
the text in the figure is displayed in Times New Roman, which may be
more suitable for printed media.

Fig. 6. Detail view of the example figure with the ‘handout.mss’ style
sheet applied.

Figure 7 shows a detail view of the figure withpaper.mss ap-
plied. This style sheet is similar tohandout.mss in that the colors
are black and white and the fonts have serifs. However, this figure is
narrow and tall to accommodate the narrow columns of a two-column
paper. Theaxes objects have theirdisplay property set toblock
to ensure that the small multiples are arrayed vertically.

7 FUTURE WORK

7.1 The MSS Visual Formatting Model
The current version of MSS only implements a primitive subset of
the CSS visual formatting model. The most natural addition to the
MSS visual formatting model would be theabosolute positioning
scheme. Without this scheme, there are some layouts that MSScan-
not produce. Also, therelative, andfloat positioning schemes
would make it possible for MSS to achieve the same layout in a num-
ber of ways. While this may seem like unnecessary complexity, the
flexibility provided

Currently, MSS does not yet support percentage lengths. This omis-
sion greatly simplifies the CSS layout algorithms (see [2]§10), but it

Fig. 7. Detail view of the example figure with the ‘paper.mss’ style sheet
applied.

obviously limits the power of MSS layouts. In interactive visualiza-
tions, lengths specified as percentages adjust accordinglyas ancestor
elements change shape and size. The resulting dynamic layout, called
a fluid layout, can easily adapt to various target media whilemaintain-
ing the same structure.

7.2 Collapsing Margins

Due to time constraints, the CSS concept of collapsing margins was
omitted from MSS. However, there are number of applicationswhere
collapsing margins are indispensible. Consider the example shown
in Figure 8. The#red and#blue elements have equal, non-auto
margins (indicated by the partially transparent areas) on all four sides.
However, because of CSS margin collapsing, the distance between the
two elements is equal to the margin above#red and below#blue.
This even distribution of space creates a visually appealing layout that
is difficult to achieve otherwise. It is possible to mimick this effect by
specifying a top margin of 0 for#blue. However, this approach as-
sumes that#blue will always be below#red. Making sucha priori
assumptions limits the reuse of style sheets and couples thepresenta-
tion to the structure of the document. Therefore, the collapsing margin
feature of CSS would enhance the generality of MSS layout model.

7.3 Text Box Object

Another useful addition to the MSS toolkit would be a text boxobject.
That is, an object that displays text on a figure and behaves accord-
ing to the CSS box model. The existing MATLABtext objects are
absolutely positioned with respect to a parentaxes, because they are
designed to annotate theaxes.

8 CONCLUSIONS

MATLAB is a useful tool for creating visualizations, because it sup-
ports intense numerical computation (i.e., “data wrangling”), simple
creation of common chart types, and thorough customizationof the
primitive graphics objects. The goal of this project is to develop a
mechanism that achieves a high degree of customization while avoid-
ing a lot of redundant, tedious coding. Of course, there are many ways
to build upon MATLAB’s low-level graphics API to create a more in-
tuitive interface, but CSS provides a consistent, well-documented sys-
tem of powerful tools that have proven their usefulness in the realm
of web development. The MSS toolkit is a first attempt at bringing
the power and logic of CSS to bear on the problem of customizing
MATLAB graphics. Although the current version implements enough
of CSS to demonstrate the usefulness of the concept and create sim-
ple visualizations, implementing more of the CSS standard will add
significant value to the MSS toolkit.

Fig. 8. A simple example of margin collapsing. Note that the two mar-
gins have collapsed into one purple area.

REFERENCES

[1] The MathWorks.MATLAB 7 Documentation: MATLAB Graphics, 2010.
[2] World Wide Web Consortium.Cascading Style Sheets Level 2 Revision 1

(CSS 2.1) Specification: W3C Candidate Recommendation 08 September
2009.

