Tree-Based Distance Cartograms for Navigation

Jon Barron EECS

Goals

- Visualize my commute-able neighborhood
- Idea: encode using distance

 Allows easy comparison Airlines' View of the United States from Atlanta, Georgia – Intuitive? Dubuque Minneapolis/ . Cleveland Des Moines Lynchburg Denver Richmond St. Louis Kansas City San Francisco Ft. Smith Columbia * Los Angeles Dallas/

Fort Worth

From Atlanta

Dollars

El Paso

Atlanta

Input Map + Tree

Warped Tree

Tesselated Input Map

Parametrized Mesh

Constrain the Mesh

Optimize the Mesh (Maximize area, minimize perpendicular distortion, jaggedness)

"Sew" the "seams"
(minimize distortion, minimize number of edges)

Warp the image and labels

Cons:

- Heavy distortion (that's the point)
- Distances not-on-the-tree are meaningless?
- Difficult to relate to unwarped map, without labels.
- Doesn't work on general graphs
- No notion of what it means to travel *off* the tree.

Pros:

- Compelling and Interesting
- Easy to compare distances
- Labels seem easy to understand

Future Work?

What does it mean to travel off of the tree?

How many times should every location appear on the warped map? Exactly once?