Artikulate: Ligeti Style for Any Audio

Yotam Mann
CS & Music, UC Berkeley
yotammann@gmail.com

ABSTRACT

This paper describes a novel audio visualizer
that works within Ableton Live called
Artikulate. Artikulate extracts audio features
using the Zsa.descriptor library[l] and
displays them in a style inspired by Rainer
Wehinger's aural score to Gydrgy Ligeti's
Artikulation. Unlike conventional visualizers,
Artikulate visualizes some of the spectral
features of the audio file such as brightness,
noisiness, spectral centroid, etc. Artikulate also
focuses on features that are perceptually
significant.

1. INTRODUCTION

Traditional music notation gives the familiar
viewer a good understanding of the music that
it represents in a static way. In the later half of
the 20th century, and certainly so far in the 21st
century, there has been a trend away from
traditional music scores and notation and a
trend towards working entirely within Digital
Audio Workstations (DAW). The issue with
DAW:s is that they do not provide a sufficient
static visualization for many tasks. A composer
might have a hard time, for example,
positioning a flute to line up metrically with a
drum. Or, an editor could have a hard time
remembering which track has the synthesizer
and which has the room noise.

Other than a spectrograph, currently
there are no good audio visualizers available for
Digital Audio Workstations. The most widely
used and integrated visualization for digital
audio is the waveform, where amplitude is
mapped to y-axis and time to x. Waveforms
have a number of issues for users: firstly, they
all look similar to each other. Getting lost in a
sea of waveforms may cause errors such as
deleting the wrong clip, or playing the wrong
sample. This problem is especially bad when
working with large libraries or many tracks of

audio. Secondly, attacks are not clear. Though
onset detection is still an unsolved problem in
audio analysis, waveforms make no attempt to
mark any of the available heuristics for
determining a note onset. Waveforms also show
no spectral data, so determining the frequencies
within an audio clip is impossible by looking at
a waveform.

One optimal solution would be a system
that is as descriptive as music notation, but that
can be applied to any audio. Then composers
and arrangers can work with music the way
they have for centuries, cutting audio and lining
up instrument tracks using static visualizations.
Though, at the moment, it is impossible to turn
any an audio clip back into music notation,
Artikulate aims to approximate the
functionality of music notation and the
precision of a waveform representation.

2. INSPIRATION

In the 1970's, a graphic designer, Rainer
Wehinger, created a “score” for Ligeti's
Artikulation (1958) (Illustration 1). This was a
reversal of the purpose of a traditional score;
instead of the score preceding the music and
informing the players, the score came after the
music, and informed the listener. Wehinger's
score has a legend that displays the shapes
along with their encodings. It has a unique and
appealing aesthetic, and is easy to follow when
viewed aligned with the music.

= € ® ® ® _
; "% % ..:- . '.‘h' ., -I“ _"_- Y,
— " i H - e
w = - -
-

Illustration 1: A detail from the Artikulation score.

The Artkulation score occupies a space
in between music notation and the waveform; it
was created after the audio like a waveform, but
displays the content of the audio file like a
score. For this reason it underlies the design of
the Artikulate software. The advantages it has
over music notation is that by getting away
from traditional note heads and rests, it is able
to display more general audio, especially
electronic sounds. Artikulate seeks to capture
the hand-drawn look of Wehingers score and
the descriptive power of audio analysis tools.

3. GOALS

At the moment, extracting features from
general audio is a difficult problem. A
computer, unlike Wehinger, has a hard time
distinguishing instruments, finding note onsets
and endings, and deciding what the significant
features in an audio clip are. However, this is a
burgeoning field, and there is starting to be
more readily available tools for analyzing
audio. Given the limitations of the existing
software analysis tools, the purpose of
Artikulate is not to turn any audio into music
notation, but to occupy a similar area as the
Artikulation score in between notation and the
waveform.

The goal of Artikulate is firstly, to make
different tracks in the DAW more differentiable
from one another. This would allow the editor
to keep track of clips more easily and not get
lost in a stacks of gray waveforms. Secondly, it
seeks to encode attributes of the audio file in
the visualization so that whoever is working
with the audio has some understanding of the
sound of the clip without constantly having to

listen to it, which can be very time consuming
given many clips. Thirdly, Artikulate aims to
bring a more aesthetically pleasing experience
to working with digital audio by basing its
visuals on Wehinger's.

4. RELATED WORK

There has been some research into extracting
features from audio [3] [4], but not as much
development on turning this research into
meaningful visualizations. Current audio
visualizers, other than spectrographs do not
allow the user to create static visualizations.
Instead, most visualizers create abstract,
temporal representations of the audio.
Commercial products like the iTunes and
Windows Media Player visualizers are mostly
focused on the graphics component; they use
the amplitude data to create non-deterministic
landscapes that can accompany the audio, but
rarely inform the viewer to the content of the
audio.

Some other visualizers go beyond just
the amplitude data. Kai Siedenberg's software
described in his paper, An Exploration of Real-
Time Visualizations of Musical Timbre [2]
attempts to display as many of the Zsa
descriptors as possible; the result can be
difficult to read and find what is the significant
components of the visualization.

Another visualizer described by Ondiej
Kubelka displays a few perceptual
characteristics of digital audio [6]. It
dynamically encodes an approximation of the
mood, tempo, and balance (left and right) of a
stereo audio file. The final display resembles a
fountain with multicolored streams.

Artikulate attempts to bridge the gap
between fairly meaningless, visually interesting
representations like the iTunes visualizer, and

dense, but meaningful encoding like the
waveform, spectrograph, and Siedenberg's
visualization.

5. METHODS

Artikulate was created entirely in the high-level
visual programming language Max/MSP/Jitter.

The visuals are created using Jitter's OpenGL
rendering.

5.1 Extracting Data

Getting significant data from the audio was the
first step in making a powerful visualization.
Zsa.descriptors is one of the first readily
available tools for extracting high-level features
from audio in real-time. The Zsa descriptors
used in Artikulate are the spectral centroid and
spread, flux, fundamental estimation and Bark
coefficients (illustration 2). Alongside these
descriptors is another powerful tool created at
MIT and CNMAT, the Analyzer~ object in
Max/MSP [5]. Analyzer~ provides data on
noisiness, brightness, loudness, and attack
detection.

- L. .'& e L. LT
zsafregpeak—~ zZsa.enargy—~
-

- - e - p s
zsa.centroid— zsa.spread— zsa flux~
- - -

zsa fund 258 bark~

fitout~ 2 nofft fitout~ 3 nofft ‘out 1 out 2

fitout~ 1 nafft

Illustration 2: Zsa Descriptors analysis on the Fast Fourier
Transform

The power of these tools is that they are
perceptually significant. Spectral spread and
centroid deeply affect our perception of timbre.
Bark coeftficients are a model that breaks up the
frequency spectrum into perceptually
significant components. Onset detection is
another powerful measurement that allows the
software to create note heads, a feature that no
other visualization software currently has.
Though the onset detection occasionally missed
attacks, it rarely gave false positives in the
testing.

5.2 Encodings
I analyzed Wehinger's score and legend and
extracted the shapes and colors that [would use

for Artikulate, then mapped these to the
descriptors, or groups of descriptors that were
extracted in the analysis portion of the software.

5.2.1 Circles

The purpose of the software was to make
different tracks differentiable, not to display
exact values of the descriptors for analysis
purposes. The circles encode the value of the
noisiness and the minima and maxima of the
loudness of the audio file. The amount of
noisiness alters the hue of the circle. I chose to
use hue even though it is not as discernible as
value because it added more color and variation
to the end product. The amount of loudness is
redundantly encoded as the position along the
y-axis starting from the top and the size of the
circle. Circles are only drawn when the amount
of flux is sufficiently high. This makes the
circles appear most often when there are small
note attacks (illustration 3).

-
[3

Hlustration 3:
Circles encoding
noisiness,
loudness, and
spectral flux.

5.2.2 Background Blobs

The beige blobs in the background encode
spectral centroid and spread (illustration 4).
These are modeled after the beige globules of
Wehinger's score which denote phrases. The
centroid is at the center of the blob, and the
amount of spread is how far from the center the
blob spans. To make these shapes correspond
more closely to the phrase marks, they stop
whenever there is silence in the recording. The
values are all on a logarithmic scale so that the
blobs hover roughly around the center of the
screen, and span most of the screen. Once
again, the reasoning there is that the goal is not

to show exact values, but rather to style the
visuals after the score and differentiate the
tracks.

-

Ilustration 4: Centroid at the

center of the blob, and spectral

spread is the distance from the
center

5.2.3 Notes

The notes encode attack, frequency and
brightness. They are only created when the
Analysis~ object reports and attack in the audio.
At that moment, the brightness is determined
and encoded in three ordinal variables: the least
bright attacks are circles with tails, then squares
with tails, and finally triangles for the brightest
attacks (illustration 5, 6, & 7).

O_

Illustration 5: Open circles
have the dullest attack.

Illustration 6: Squares have
the next brightest attack

| e

Illustration 7: Triangle
encodes very bright attacks
such as percussion.

The y-axis position of the shapes encodes the
frequency of the note and the length of the tail
depends on how long the note lasts for. These
are both determined by the Bark Coefficients.
Bark Coefficients show the energy in a small

number of frequency bands that are the most
differentiable to the ear. The highest value Bark
Coefficients are monitored until the values drop
off. If the harmonic lasted sufficiently long,
then it is displayed as the tail of a note. A note
can have many strong harmonics; those are
shown as stacked notes (illustration 7).

5.3 RENDERING

All of the images are created using OpenGL
commands and rendered using Jitter. All of the
text commands are pumped into a queue as they
are generated from the audio signal. Once the
audio file has finished processing, GL rendering
is started.

5.4 ABLETON LIVE INTEGRATION

After completing the code in Max/MSP, it was
fairly simple to make Artikulate a software
plugin in Live. Live's new “Max for Live”
integration allows Max patches to be easily
converted into plugins. Once the plugin is
added to a track, the visualization is generated.
Then, every time that track is selected,
Artikulate shows the visualization at the bottom
of the screen, so the user is able to see both the
plugin visualization and the waveform in the
arrange window. Where ever the user places the
playhead along the audio, Artikulate shows a
visualization of the surrounding two seconds of
audio. Artikulate will also scroll along with the
audio file as it plays.

6. DISCUSSION

Artikulate was tested with a six differing audio
clips, the resulting visualization was assessed
for correlation to the audio file, expectation for
the visualizations, and closeness in asthetic to
the Artikuation score.

Visualizations that Artikulate produces
are comparable in looks to Wehinger's
Artikulation score. They are similar in terms of
colors, shapes, and density of symbols with the
audio files tested. For the most part, they
parallel the audio file well. The system analyzes
the audio file at a high sample rate, around a
tenth of a second, which makes note attacks and
tails line up well to the sounds.

Artikulate works best when notes and
especially attacks in the audio are loud and
clearly defined. There is poor results when the
sounds are too complex or polyphonic, like an
entire band playing on a single track. Luckily,
many people working in DAWSs generally split
tracks into individual instruments or sounds.

The encoding that works the best is the
notes. These generally correspond the best to
the audio source, though, in densely rhythmic
or quiet audio, they will miss many attacks. the
ordinal encoding of brightness also works well
for visually describing the audio. Frequencies
and note length are also in accord with the
sound of the audio file. Highly harmonic audio
will generally have many stacked notes and
notes will often start and end at the same time
as they do in the audio file.

o
P—-—

I--P-—"" —

Illustration 8: Percussive data with all triangles and
harmonics accurately encoded

The circles add a lot of color and
differentiability between tracks and sections
within a track, and also encode a lot of attacks
that the notes miss since they are only
generated during moments of high spectral flux.
The placement on the y-axis of the circles does
not correspond well to the audio. Louder
section do not always have lower, larger circles
than quiet sections. The color encoding of
noisiness does not seem to coincide well to the
audio either. Noisiness may not be as
perceptually significant a variable as some of
the things like flux and loudness.

Illustration 9: This harmonically dense recording of piano
has lots of notes and circles.

The background blobs encode the data
accurately, but do not add significantly to the
understandability or differentiability of the
audio file. They help with the aesthetics by
making the visualization resemble Wehinger's,
but they are too choppy and do not follow
phrases breaks very well.

Illustration 10: Background
shape with two "phrases"

The performance of Artikulate is fairly
slow. Analysis and visualization creation run at
about 2-5 times faster than the audio file, which
is reasonable for short files, but a long wait for
any audio over a minute. The image scrolls
along with the audio well if there is only one
plugin running; with more than that, rendering
all of the OpenGL graphics becomes very
processor heavy.

7. RESULTS

Artikulate bridges the gap between
deterministic measurements of the audio signal
like spectrographs and waveforms, and purely
aesthetic, non-deterministic interpretations of
the audio such as the iTunes visualizer. In
contrast to commercial products like the iTunes
visualizer, Artikulate corresponds closely to the
audio signal and is not based on any
randomness. It produces a static image of the
audio file, like a score, which scrolls through as
the audio plays. Like iTunes, Artikulate seeks to
create a unique aesthetic experience that
accompanies that audio.

Similar to more scientific approaches to
audio visualizations, like Seidenberg's
visualization, Artikulate heavily relies on the
FFT of the audio source, not just the amplitude
to determine perceptually significant attributes
to display. Unlike these visualizers though,
Artikulate's purpose is not just to convey
information about the audio, but to display the
significant components of that data in an
interesting way. Artikulate is also unique in that
it was designed after an existing audio
visualization drawn by hand.

Artikulate's goals were reached in this
iteration of the software. It produced
visualizations which are easily differentiable
from one another and correspond closely to the
audio source. These visualizations inform the
listener while the clip is playing, and the
editor/arranger while the audio is not.

8. FUTURE WORK

Artikulate will require more fine tuning in
future iterations. The background shape should
be adjusted so that it still shows the centroid
and spread, but scaled so that it is a smoother
shape and corresponds better to musical
“phrases”.

Artikulate could also include layout
optimization so that the final product does not
have overlaps and will look more like it was
drawn by hand, like Wehinger's score. Greater
smoothing in the OpenGL would also give a
hand-drawn effect.

Future iterations might also move away
from OpenGL, and adopt other visualization
APIs like Protovis which would provide a
higher level of graphics and greater interaction
such as selection and zooming which at the
moment Artikulate does not support because of
the processing load of those operations[7].

9. ACKNOWLEDGMENTS

I would like to thank Maneesh Agrawala for
teaching an interesting and informative class on
visualizations.

10. REFERENCES

[1] Mikhail Malt, Emmanuel Jourdan.
Zsa.Descriptor: A Library for Real-Time
Descriptor Analysis. Proceedings of 5th
Sound and Music Computing Conference,
Berlin, 2008.

2] Kai Siedenberg. An Exploration of Real-
Time Visualizations of Musical Timbre.
CNMAT, Berkeley, 2009.

[3] Juan José Burred and Geoffroy Peeters. An
Adaptive System for Music Classification
and Tagging. Proceedings from the 3™
International ~ Workshop on Learning
Semantics of Audio Signals. Graz, Austria,
2009.

4] Anssi Klapuri. Extracting meaningful
auditory objects from music signals:
methods and applications. Proceedings

from the 3™ International Workshop on
Learning Semantics of Audio Signals. Graz,
Austria, 2009.

(5] Tristan Jehan, Adrian Freed, Matt Wright,
and Michael Zbyszynski. Analyzer~ Object.
Massachusetts Institute of Technology &
CNMAT, 2001.

6] Ondiej Kubelka. Interactive music
visualization. Czech Technical University.
[71 Michael Bostock and Jeffrey Heer.

Protovis: A Graphical Toolkit for
Visualization. Stanford University.

