
Tree-Based Distance Cartograms for Navigation

Jonathan Barron
CS270 + CS294-10 Project

Abstract

Cartograms are a popular method of using the geog-
raphy of a map to convey some non-geographic piece
of information. Though area cartograms are most
popular, distance cartograms have also demonstrated
some use in visualization. Unfortunately, distance car-
tograms are hard to automatically or manually gen-
erate, and their use has typically been constrained to
point-to-point as-the-crow-flies problems, (such as air-
line travel), while many other uses (train navigation,
for example) require more generic methods. We present
a new type of distance cartograms, in which costs be-
tween (adjacent) points are specified using a tree, using
the map of BART as an example of such a problem.
We then present a method for automatically generat-
ing distance cartograms from such a tree. Our method
consists of a number of non-trivial problems, each of
which we present efficient solutions to.

1. Introduction

A cartogram is a distortion of a map, for the pur-
pose of displaying some non-geographic information.
The most popular kind of cartogram is an “area” car-
togram, in which areas of the map are enlarged or
shrunk to reflect some property. For example, in Fig-
ure 1(a) we see a visualization of the 2004 US presiden-
tial election results, in which the area of the map has
been distorted to reflect population density. Though
this image does not accurately reflect the shape of
the US or its states, it more accurately conveys non-
geographic information, such as population. As op-
posed to a non-distorted map, which would seem heav-
ily skewed to red (as red states tend to be larger and
less dense), this area cartogram shows that red and
blue are somewhat balanced, when the geographic size
of states are factored out.

A “distance” cartogram is a distorted version of a
map in which distances between points have been dis-
torted to reflect some relationship. See Figure 1(b) for
an example. A standard map of the United States has

been distorted such that the distance between Atlanta
and every other city is proportional to the cost of flying
via airplane. These sorts of visualizations are power-
ful, as using distance to encode cost allows for effective
comparison of costs (”Grand Rapids is twice as costly
to visit as St. Louis”) has been demonstrated to be
effective by the information visualization community.
However, the question of how to automatically gener-
ate such distance cartograms, especially when costs are
more complicated than in Figure 1(b). In particular,
we are interested in developing an algorithm that can
tolerate not simply the costs from the origin to a set
of points, but which can be used to visualize a tree, in
which each edge has a cost, such that the total cost
of visiting a node is the cost of the min-cost traversal
of the tree from the origin. This framework encom-
passes a larger set of problems, such as air-travel with
layovers, public transportation, etc.

Consider, for example, visualizing a tree-structured
subway map, an example of which can be seen in Fig-
ure 6(a). Edges represent lines on the subway system,
and nodes represent stops, with size (small = low, large
= high) encoding the total “cost” of going from the
start point (the root of the tree, indicated by a star) to
that node, where “cost” is expected commute time. In
this example, we calculated cost by first calculating the
cost of traversing each edge (a function of the length of
an edge, and the frequency at which trains run along
that edge), and then finding the minimum-cost path
from the origin (indicated by a star) to each point. We
see that some points, though geographically close to
the root, are substantially more “costly” to visit than
other points that are geographically much more dis-
tant from the root. Using size (or color, shape, etc)
to encode cost is unintuitive: it is difficult to estimate
what points are more or less costly than others, which
agrees with human perceptual research that indicates
humans prefer using position to encode quantitative
information.

In Figure 6(b), we see the output of our algorithm.
The subway-tree in Figure 6(a) has been distorted such
that Euclidian distance from the origin is exactly equal

1

(a) an area cartogram from (1), displaying presidential election
results.

(b) a distance cartogram from (2), displaying airplane travel
costs.

Figure 1. Two examples of cartograms.

to the cost of reaching that point from the origin.
The image representing the map has accordingly been
warped onto this transformed tree. An additional in-
put/output example can be seen in Figure 3, which is a
randomly generated graph on a colorized checkerboard
image.

Because visualizations of this sort have never been
made before, it’s not clear how useful they will be. We
hope that our results will provide insight into exactly
how distance cartograms should be used, if at all.

2. Algorithm

Our algorithm is a series of operations, which we
outline in Figures 8 and 9. First, we warp the tree
(the subway line), by performing a traversal of the tree
from the root, allocating “chucks” of space to each sub-
tree, in a greedy fashion (Step 2). This algorithm has
the nice property that distance from the origin is, by
construction, equal to cost. We then tesselate the map-
image into a mesh, which is parameterized by the nodes
along the tree, and by a disjoint set of “seam” nodes
(Step 3). We first subdivide the mesh by cutting along
these seams, producing a set of triangles which attach
to the tree (Step 4). These seam nodes are then ad-
justed to optimize a number of criteria, such as pre-
venting overlap, minimizing distortion (perpendicular
to the tree), and minimizing jaggedness in the warped
mesh (Steps 5-7). We can “sew” up these seam nodes,
to produce a coherent warped map-image (Steps 8-9).
This mesh defines a transformation from the input im-
age to the warped tree, which we use to produce the
warped image seen in Figures 6(a) and 6(b).

2.1. Tree Warping

We lay out the tree according to the following
critiera: The starting node (henceforth referred to as
the origin) is located at the origin, and the Euclidian
distance from all other tree-nodes to the origin must be
exactly proportional to the cost from the origin to that
node. We also require that edges in the warped tree do
not overlap. Additionally, we want the tree to arranged
such that no part of the map is much more densely or
sparsely populated with tree nodes, and such that the
overall shape of the warped tree is “simple”, in that
nodes tend to radiate outwards from the origin, with

Figure 2. An example of our tree-warping algorithm.

2

no unnecessary zig-zagging. We were able to define a
simple, greedy algorithm that traverses the tree in a
breadth-first fashion, laying out the warped tree as it
traverses.

Our algorithm, shown in Figure 2.1, is defined re-
cursively on a subtree. Given the locations of node
r and its parent p(r), and an isoceles triangle rooted
at p(r) such that r is within that triangle, we wish to
place c(r), the children of r, and their enclosing tri-
angles (note that r may have any number of children,
though we just display 2). We do this by looking at
the angle (shown as an arc) defined by r and the two
corners of its enclosing triangle. This angle is subdi-
vided for each sub-tree, with the size of the angle al-
located to each subtree proportional to the number of
nodes in that subtree (for the sake of having an evenly
dense distribution of points in the final tree). Each an-
gle is then subtended to produce the ray along which
each c(r) is placed. Each c(r), is placed along its ray
such that the Euclidian distance from c(r) to the ori-
gin is equal to the cost of c(r) (which requires using
the quadratic equation). Assuming monotonically in-
creasing costs, and assuming r was also placed such
that its cost is proportional to its Euclidian distance
from the origin, c(r) will be able to be placed such
that this requirement is satisfied, and such that c(r)
lies within the triangle enclosing r. Then, to place the
enclosing triangle around c(r), we find another point
along that ray, such that the distance to the origin is
equal to the cost of the most expensive node in the
subtree of c(r). The two corners of that triangle are
placed at that distance, and the algorithm can then
recurse. When placing the origin and its children, in-
stead of considering an enclosing triangle, we use the
same algorithm except with all angles being valid, so
we subdivide all angles from 0-360.

One goal in placing the enclosing triangles is that
the entire subtree rooted at the node placed within
that triangle can be fit within it. As can be seen in
Figures 8(b) and 9(b), this is not always the case, but
the algorithm still produces pleasant-looking warpings
that satisfy our criteria, so we consider this method of
placing triangles a useful heuristic.

Note that our two hard criteria (that distance ∝
cost, and that edges do not intersect) are necessarily
satisfied by this algorithm. A much simpler algorithm,
which we experimented with earlier, is to simply con-
vert the tree into polar coordinates, such that radius
∝ cost, and the angle is determined during a breadth-
first traversal of the tree. This satisfies the first hard
criterion, but sometimes produces overlapping edges.

Figure 3. A Voronoi tesselation of the (subsampled points)
on the initial tree. Blue dots are nodes in the voronoi tesse-
lation, red lines indicate the initial tree, blue lines indicate
edges in the voronoi tesselation.

2.2. Mesh Construction

Once we have an initial tree, and a warped tree, we
need to construct a warping from every point in the
initial map to the warped map. Our solution to this
problem will be to tesselate the initial map into a trian-
gular mesh, and then warp that mesh into the warped
tree. This is a non-trivial operation, and requires a
number of steps. The output of this mesh construc-
tion can be seen in Figures 8(b) and 9(b). We will first
define the procedure we use, and then explain why we
have followed this procedure.

First, we wish to construct the Voronoi tesselation
of the tree, shown in Figure 2.2. Voronoi tesselations
of line segments instead of points have been stud-
ied extensively, and are sometimes called “segment”
Voronoi diagrams(4), or variations of the medial axis
transformation(5). Instead of the points and poly-
gons that the standard Voronoi tesselation produces,
these techniques produce curves and line segments.
To then produce a polygonal tesselation from these
techniques requires sampling these curves and lines,
which seems to defeat the purpose. We will there-
fore subsample our initial tree (adding nodes to each
edge such that the distance between adjacent nodes is
≤ ε), and then take the Voronoi tesselation of those
subsampled points (and additional points along the
edge of the map). These “vanilla” Voronoi tessela-
tions can be computed efficiently(3). These new points
(which we will call “seam” points, as they compose the
“seams” along which we will “cut” our final mesh) are
equidistant from points on the tree, and are therefore

3

roughly equidistant from the line segments that the
tree are composed of. First, we remove all edges in the
voronoi tesselation that intersect with the initial tree
(and those that connect to the added nodes along the
border). We then add in all edges between each seam
node and their closest nodes in the (subsampled) initial
tree, and the edges of the subsampled initial tree. The
resulting tesselation is what we see in Figures 8(b) and
9(b), where we have a series of triangles connecting the
tree-nodes to the seam-nodes, such that each edge of
the tree has a strip of triangles attached to it, border-
ing it on each side. Each strip will then be warped onto
the warped tree, in Sections 2.3 and 2.4.

We must modify the mesh such that, when warped,
it can be “cut” along the seam-nodes. This requires du-
plicating each seam-node, and then selectively merging
those that belong to triangles that are on the same side
of the seam. The details of this are tedious, but the
overall process can be accomplished efficiently with the
union-find datastructure.

2.3. Mesh Parameterization

We can now parametrize the mesh constructed in
the previous section, such that it can be warped onto
the warped tree. We investigated using standard mesh
warping techniques like Laplacian surface-editing(6),
but these techniques tend to favor producing warpings
in which distortion (by some metric like rigidity, con-
gruence, similarity, etc) is minimized, and the primary
goal of our algorithm is to produce a warping in which
the map is heavily distorted when Euclidian distance
on the map is not proportional to distance. We there-
fore had to design our own distortion technique.

We will parametrize each seam-node i by a point pi

and a unit vector vi. We will do this by looking at the
nearest point on the tree to each seam-node. There are
only three possible cases that we will need to address,
each of which are shown in Figure 2.3.

Case 1 (Figure 4(a)) is if the closest point on the
tree is a point on an edge. In that case, we look at
the distance along the edge of the projection of the
point on that edge, and find a corresponding point on
the warped tree (pi). We then take the perpendicular
direction of that edge as vi, making sure that the vector
is on the correct side of the edge.

Case 2 (Figure 4(b)) is if the closest point on the
tree is a leaf node. In this case, we look at the angle
defined by the vector from the seam-node to the tree-
node, and the adjacent edge. We then find a vector
on the warped tree with the same angle, and use that
vector as vi, and that warped tree-node as pi.

Case 3 (Figure 4(c)) is if the closest point is a non-
leaf node. We use that non-leaf warped tree node as

(a) Case 1: closest point is an edge

(b) Case 2: closest point is a leaf node

(c) Case 3: closest point is a non-leaf node

Figure 4. The three cases we must address in parametrizing
the seam-nodes

pi, and look at the angles between the adjacent edges
and the seam-node. We then construct vi such that the
angle between it and the adjacent edges on the warped
tree have the same ratio as they did in the initial tree.

This pi, vi parametrization defines a family of
warped meshes, in which the free parameters are the
scalar values si that each vi is multiplied with. That
is, ni = pi + si × vi, where ni is the warped version of
seam-node i. With this parametrization, we can opti-
mize over si to produce an appropriate mesh.

2.4. Mesh Optimization

When optimizing over our parametrized mesh, we
must have some criteria in mind.

1. We do not want triangles in the warped mesh to
overlap.

4

2. We want the warped mesh to occupy as much of
the screen as possible, for the sake of conveying as
much information as possible

3. Because of how we parametrized our mesh in case
1, we will necessarily have significant distortion
along the direction of the tree edges (as this is
the goal of our algorithm), but we would like to
minimize the amount of distortion perpendicular
to each edge.

4. We do not want a jagged warped mesh, even
though the initial mesh is very jagged, because
it often difficult to interpret.

To satisfy the first goal, we first find the edges in the
voronoi tesselation of the warped tree (shown in Fig-
ure 8(e) and 9(e)). By finding the first intersection of
these edges with each ray pi+si×vi, we find smax

i , the
maximum value of si. By keeping si ≤ smax

i , we con-
strain the seam-nodes such that the resulting warped
mesh doesn’t not self-intersect.

To satisfy the second goal, we can simply maximize
each si, which has the effect of maximizing the area
of each triangle, thereby maximizing the utilization of
the screen.

To satisfy the third goal, for each seam-node we cal-
culate di, the distance from that initial seam-node to
the nearest point on the initial tree. In the warped
mesh, we will encourage the distance from each seam-
node to pi (which corresponds to the nearest point of
each initial seam-node on the initial tree) to be as close
as possible to di. Because each vi is a unit vector, this
is equivalent to encouraging each si to be close to the
corresponding di. Doing this minimizes distortion per-
pendicular to each tree-edge.

To satisfy the fourth goal, we simply constrain each
si to be similar to the scales of its neighboring seam-
nodes (that is, the other seam nodes which are involved
in the same triangles as si). We will call each set of
neighboring seam-nodes Ni.

These four criteria are satisfied by solving the fol-
lowing convex optimization problem:

max
∑

i

si − λ1(si − di)2 − λ2

∑
j∈Ni

(si − sj)2

s.t. ∀isi ≤ smax
i (1)

Where λ1 and λ2 are non-negative multipliers that con-
trol how heavily our smoothness and distortion penal-
ties are weighted, and are set by hand. We solve this
optimization problem using a generic convex optimiza-
tion solver, though it certainly seems to have the form
of a quadratic program, and could therefore be solved
as such.

Figure 5. An example of a seam in our warped mesh being
“sewn”. Active edges are shown in black, removed edges
are shown in gray. Distortion of the seam-nodes is shown
as red springs.

Figures 8(d) and 8(d) show how the warped mesh
looks when si are chosen arbitrarily. We see over-
lapping edges, and triangles with heavy perpendicu-
lar distortion. In Figures 8(f) and 9(f) show how the
distorted mesh looks when we simply set each si to
smax

i (equivalent to solving the optimization problem
with λ1 = λ2 = 0), in which there is no more over-
lapping, but still heavy distortion and jaggedness. In
Figures 8(g) and 9(g) we see the final output of our op-
timization routine, with the λ multipliers set properly.
The edges of the warped mesh are smooth, perpen-
dicular distortion is minimized, overlaps do not occur,
and the mesh still occupies a significant portion of the
image.

2.5. Mesh Post-processing

The warped meshes have an unfortunate property
that often, two warped seam-nodes that correspond
to identical seam-nodes in the initial mesh are near
each other, but not at the exact same location at each
other, which makes small cracks in the warped mesh.
We therefore experimented with post-processing the
warped meshes, in which we “sew” some of the seams
in the mesh back up, by merging their matching seam-
nodes. We will do this according to the following cri-
teria: we want to eliminate unnecessary edges in the
mesh (that is, the edges that contain seam-nodes that
could be merged), but not at the cost of excessively dis-
torting the un-sewn warped mesh. This appears to be
a difficult combinatorial optimization problem, but is
made simpler by the fact that we only wish to merge a
set of seam-nodes if the seam-nodes prior to that node

5

have already been sewn (imagine pulling a zipper up
each seam). This requirement enforces a strict order-
ing over seam-nodes that can be merged, which makes
this operation easy to implement efficiently.

First, we must construct the ordering in which nodes
can be sewn. This ordering is shown in Figures 8(h)
and 9(h), in which color encodes the different (disjoint)
seams, and size encodes the order (smallest first). The
disjoint seams can be found efficiently simply by find-
ing the connected components of the seam-node edges.
Finding the ordering is more complicated: for each dis-
joint seam, we keep track of the nodes that have been
visited, and we repeatedly query the graph for a node
which is adjacent to exactly 1 not-visited node. As
nodes are visited in this fashion, they are added to
the table of visited nodes, and to that seam’s order-
ing. The resulting ordering is exactly to our specifi-
cation: “leafs” of the seam nodes are added first (as
they philosophically correspond to the starting point
of the seams we are sewing), and then their neighbors
are added, provided that the seam in all but one di-
rection has already been sewn up. This is important
for the three-way intersections in the seams, in which
we must take care not to sew together a seam until all
down-stream edges have already been sewn.

Given these orderings, we must now describe a cost
function over seams in the warped tree. The motiva-
tion for our cost function is as follows: we want to
reduce the number of duplicate edges (separate edges
in our warped mesh that correspond to a single edge
in the initial mesh), while reducing how much each
warped seam-node is distorted from its starting posi-
tion (the position returned in Section 2.4). Our cost
function will therefore be −|E| + λ3

∑
i wi, where |E|

is the number of seam-edges (edges that connect seam-
nodes) in the warped mesh, and wi is the Euclidian
distance that seam-node i has been distorted. There-
fore, in Figure 2.5, the cost of the tree to the left (before
sewing an edge) is cost0 = −5+λ3(w1 +w2), while the
cost of the tree to the right (after sewing an edge) is
cost1 = −4 + λ3(w1 + w2 + w3 + w4). The difference
between the two is ∆cost = −1 + λ3(w3 + w4). We set
λ3 by hand, according to how appealing the resulting
visualization looks.

Given how this cost function decomposes nicely as
the sum of the cost of each node-sewing operation,
and given that we have a pre-defined ordering in which
edges must be sewn, it is easy to efficiently calculate
the costs of all legal sewings: we simply iterate through
the ordering, sewing nodes and recording the cost at
each step, where we calculate the cost by calculating
the ∆cost, and adding that to the previously computed
cost. This is effectively an extremely simple dynamic

programming problem, in which we have a single vector
for each disjoint seam, which we fill in (and can there-
fore be computed extremely efficiently). After the cost
table for each seam has been constructed, we select the
entry with the lowest cost, and use the set of merged
nodes that corresponds to that entry (which we have al-
ready computed) as our new set of merged nodes. The
resulting “sewn” meshes can be seen in Figures 8(i)
and 9(i).

The warped mesh after this sewing operation has
much fewer unnecessary seams, but this operation of-
ten produces overlapping triangles. This could presum-
ably be remedied by checking for overlap during the
optimization procedure and assigning overlaps a very
high cost, though this seems significantly more compu-
tationally expensive than the current algorithm.

2.6. Image Warping

With our final warped mesh, warping the underly-
ing image is fairly straightforward, and very similar to
texture mapping. We will scan through each pixel in
the warped mesh, and check which triangle it lies in.
We then compute an affine transformation from that
warped triangle to the initial triangle, and compute the
unwarped coordinates of the pixel being queried. We
then interpolate the value of that unwarped coordinate
in the initial image, as use that as the pixel value of
the point being queried in the warped mesh. This op-
eration can be done efficiently using standard graphics
techniques and hardware, by simply texture-mapping
the initial mesh, and then rendering the warped mesh.
The final warped images can be seen in Figures 6(b)
and 7(b). Additionally, in Figure 3 we labeled some
point on the warped and unwarped map, such that
they can more easily be correlated with each other.

3. Conclusions

There are many shortcomings to this method of vi-
sualization:

• The map-image being warped can be heavily dis-
torted — in fact, for distance cartograms to be
useful, this must be the case: we would not want
to produce a visualization such as this for a map
in which euclidian distance is proportional to cost,
which are the only maps in which distortion would
not occur.

• Distances between points not on the tree are effec-
tively meaningless. Preserving distances between
such points seems as though it would overconstrain
our algorithm, though its not even clear what we
would want to preserve.

6

• It is difficult to relate the warped map to the un-
warped map. In Figure 6(b), for example, it is
difficult to see that the map on the far left is in
fact the eastern coast of the San Francisco penin-
sula. This is necessary artefact from our warping
requirements, so it is not clear how to resolve this
issue.

• This algorithm does not address cyclic trees (gen-
eral graphs). The fundamental ideas of this
method of visualization does not have a clear ana-
log when the graph is not a strict tree.

• There is no real notion of what it means to travel
off the tree. For example, most users would not
travel the length of Bart and Caltrain to visit Gi-
ant’s stadium, when they could get off the Bart
earlier and simply walk the remaining distance.
Exactly how to resolve this is unclear.

Thankfully, there seem to be some benefits to this
visualization method:

• The warped maps are compelling and informative.
Viewers seem to enjoy interpreting these visualiza-
tions, and are often surprised by what they learn
regarding relative distances. Such effects when
viewing the un-distorted maps are less common,
because this cost information must be encoded
with a less effective cue than position.

• Labeling known points on the map seems to be
very helpful for orienting the viewer, and for com-
paring distances.

A simplification to this visualization technique, in
which we do not render the warped image, but instead
heavily annotate the warped tree, may be more useful
in practice. Or perhaps a compromise between display-
ing and not displaying the warped image, in which the
warped image becomes partially translucent as it gets
further from the tree, may be most effective.

Many of the negative aspects of this method of vi-
sualization might be addressed by radically rethinking
what it means to warp a map. Our method, because it
relies on this mesh warping framework, implicitly has
the assumption that every point in the initial map must
be present exactly once in the warped mesh. However,
it may be reasonable to render the same point on the
initial map more than once on the warped map if it
can be reached in multiple ways (for example, one can
walk to Giant’s stadium from Bart, or reach it by Cal-
train). This idea should probably be addressed in con-
junction with rethinking what it means to travel “off”
the tree, as this is presumably the means by which one

could reach the same destination through two separate
routes.

References

[1] http://www-personal.umich.edu/∼mejn/election/

2008/.
[2] B. Dent. Cartography: Thematic Map Design. Wm. C.

Brown, Dubuque, IA, 1996.
[3] S. Fortune. A sweepline algorithm for voronoi diagrams.

In SCG ’86: Proceedings of the second annual sympo-
sium on Computational geometry, pages 313–322, New
York, NY, USA, 1986. ACM.

[4] M. I. Karavelas. A robust and efficient implementation
for the segment voronoi diagram. In Proc. 1 st Int.
Symp. on Voronoi Diagrams in Science and Engineer-
ing, pages 51–62, 2004.

[5] D. Lee. Medial axis transformation of a planar shape.
4(4):363–369, July 1982.

[6] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa,
C. Rössl, and H.-P. Seidel. Laplacian surface editing.
In SGP ’04: Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages
175–184, New York, NY, USA, 2004. ACM.

7

(a) Input

(b) Output

Figure 6. An input and output map, of the Bay Area Rapid Transit system.

8

(a) Input

(b) Output

Figure 7. A synthetic input and output map.

9

(a) Step 1: The input, a tree with costs
from the origin to each point, which
satisfy the triangle inequality, and an

accompanying map.

(b) Step 2: The input tree, warped such
that distance from the origin is

proportional to cost from the origin. The
translucent triangles are used in warping

the tree.

(c) Step 3: The mesh resulting from the
voronoi tesselation of the tree. Red edges
indicate “seams” along which we separate

the mesh.

(d) Step 4: That mesh re-oriented with
respect to the warped tree in step 2.

(e) Step 5: The voronoi tesselation of the
warped tree, indicating sensible
boundaries for the warped mesh.

(f) Step 6: The mesh in step 4, fit within
the tesselation boundaries in step 5.

(g) Step 7: The mesh in step 5, optimized
to minimize perpendicular distortion and

jaggedness

(h) Step 8: The different seams along
which we may wish to “sew” up the

warped mesh. Color indicates which seam,
size indicates order in which we must sew

(smallest first)

(i) Step 9: The mesh in step 7, with some
seams sewn.

Figure 8. A walkthrough of our algorithm.

10

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8 (i) Step 9

Figure 9. The same algorithm as show in Figure 3, but with a different input.

11

