Conveying Shape: Shading, Lighting and Texture

Maneesh Agrawala

CS 294-10: Visualization Spring 2010

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- 8-12 page paper in format of conference paper submission
- 2 design discussion presentations

Schedule

- Project proposal: 3/29 Initial problem presentation: 3/3
- Final presentation: In class
- Final paper:

Grading

- Groups of up to 3 people, graded individually
 Clearly report responsibilities of each member

Conveying shape

Lines Shading

From Gooch²

Topics

Shading Shape from shading Lighting Texture

Diffuse shading [Gooch et al. 99]

Dark regions hide details Gray silhouettes merge with background Surface orientation not emphasized

Edges + highlights

Edge lines divide object into parts Highlights convey light direction and curvature Can't see some regions of high curvature

Edges + highlights + diffuse + ambient

Some details lost in dark gray regions, but can see curvature better in claws

Luminance and hue/tone Image: stronger sense of depth

Anisotropic metallic objects

Reflection lines

From Farin and Harnsford

Photo-retouching

T. A. Thomas, Technical illustration

Photo-retouching

T. A. Thomas, Technical illustration

Shape from Shading

Separating convex/concave is very fast – preattentive?

Effect diminishes at 90° rotation

More difficult to separate convex/concave Rotation of head I/r set preference for light direction I/r

- Preference based on retinal orientation, not vestibular orientation
 Shape from shading is relatively early in visual system

Spheres or cavities

Spheres or cavities

Common fate: All are convex or all are concave

Single light source constraint

Difficult to see all objects as convex or as concave When one row is convex the other row is always concave Brain only accepts 1 light source for entire image

Effect diminishes without gradients

Illusory contours and gradients

Illusory contour with background gradient

True contour with background gradient

Illusory contours and gradients

Illusory contour with background gradient

True contour with background gradient

Edges interact with interpretation of shape from shading Partial occlusion stronger evidence for existence of object than mere outline

Background brightness & color

Background brightness & color

Effect strong when edge defined by change in brightness Diminishes when change is due to hue, not brightness

Complex shape seen as convex

Complex shape seen as convex

Boundary occlusions reinforce convex interpretation Disks interpreted with respect to lighting of tube

Hollow masks lit from above

Mask lit from right side

Single light source and pointing

Symmetry

Symmetry

Shape from shading extracted before symmetry

Estimating orientation

Subject place gauge figures on photo so that ellipse appears to lie flat Results from one subject averaged over several sessions Integrate normals to get surfaces (i.e. depth estimates)

Results of estimating orientation

Little variability between subjects estimates of surface orientation Variability independent of subjects familiarity with object Subjects use global information over significant portion of object surface

Lighting

Categories of light

Single source light Double source light Flat, diffused light Moonlight Sculptural light

B. Hogarth. Dynamic Light and Shade

Goals of lighting

Power of lighting

- Show form and orientation of surface
- Emphasize high curvature with highlights
- Show silhouette clearly
- Separate object from background
- Rake bumps and surface textural details

Unintended side effects

- Over- and under-exposure
- Unintended shadows
- Distracting highlights and glare

Lighting design

Lighting design

Multiblitz lighting system, RTS Inc. Basic Portrait Lighting Set-Up Guide, Warehouse Photography

Highlights and Shadows

Remove distracting highlights and shadows

Creases, Ridges and Valleys

 $Sharp\ dark/light\ transitions\ to\ emphasize\ boundaries\ {}_{\underline{(www.shadedrelief.com)}}$

Silhouettes

Constrains shape of surface \rightarrow important shape cue Increase contrast at silhouettes to emphasize shape

Conveying Shape and Features with Image-Based Relighting

Online Submission Id: 0338

Multiple Scales

Blend between depictions at multiple scales (www.shadedrellef.com)

Detail reconstruction + base image

The lit sphere [Sloan et al. 01]

Applying idea to 3D models

After drawing sphere by hand, can look up surface color based on normal to render 3D model

Extracting sphere from 2D image

Visual cues

SGI flight 1987

GE Apollo Simulator 1963

Texturing

From V. Interrante http://www-users.cs.umn.edu/~interran/texture/index.html

Texturing

generated using line integral conv From V. Interrante http://www-users.cs.umn.edu/~interran/texture/index.html

Lines in one direction of principal curvature generated using line integral convolution (LIC)

Texturing

From V. Interrante http://www-users.cs.umn.edu/~interran/texture/index.html

Texturing results

Gauge figure studies

Significant main effect of texture type (p=0.0002843)

From V. Interrante http://www-users.cs.umn.edu/~interran/texture/index.html

Summary

Goals of lighting and shading

- Reveal shape
- Separate foreground from background
- Show surface detail

Lighting design is extremely challenging Surface-oriented texture is powerful cue