Using Space Effectively: 3D

Maneesh Agrawala

CS 294-10: Visualization Spring 2010

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- 8-12 page paper in format of conference paper submission
- 2 design discussion presentations

Schedule

- Project proposal: 3/29
- Initial problem presentation: 3/31
- Midpoint design discussion: TBD
- Final paper and presentation: TBD

Grading

- Groups of up to 3 people, graded individually
 Clearly report responsibilities of each member

Multivariate Color Sequences

Multi-dimensional Scatter plot

Variable 1, 2 \rightarrow X, Y Variable 3, 4, 5 \rightarrow R, G, B

Do people interpret color blends as sums of variables?

Using Color Dimensions to Display Data Dimensions Beatty and Ware

Get it right in black & white

Value

- Perceived lightness/darkness
- Controlling value primary rule for design
- Value defines shape
 - No edge without lightness difference
 - No shading without lightness variation

Value difference (contrast)

- Defines legibility
- Controls attention
- Creates layering

L	egibility		
	Drop Shadows		
	Drop Shadow		
	Drop shadow adds edge	Primary colors on bla Primary colors on bla Primary colors on bla Primary colors on bla	ck ck
	Primary colors on white Primary colors on white	Primary colors on bla	ck
	Primary colors on white	Primary colors on bla	ck
	Primary colors on white		
	Primary colors on white Primary colors on white		
	Primary colors on white		

Readability

If you can't use color wisely, it is best to avoid it entirely Above all, do no harm

> If you can't use color wisely, it is best to avoid it entirely Above all, do no harm.

Why does the logo work?

Value Control

Google[®] Google[®]

Legibility and Contrast

Legibility

- Function of contrast and spatial frequency
 "Psychophysics of Reading" Legge, et. al.
- Legibility standards
 - 5:1 contrast for legibility (ISO standard)
 - 3:1 minimum legibility
 - 10:1 recommended for small text

How do we specify contrast?

- Ratios of foreground to background luminance
- Different specifications for different patterns

Contrast and Layering

Value contrast creates layering

Using Space Effectively: 3D

Topics

Linear projections Non-linear projections Cartographic projections

Secondary geometry

Description in 2D image-space e.g. true shape of front face, side faces recede to vanishing point, ... Often better corresponds to drawing approach

Linear Projections

Linear projections

Straight lines and alignments are preserved

Parallel

Perspective

Willats' classification

Parallel projections

No vanishing points or foreshortening Can represent some aspects of true shape Can shrink or stretch lengths

Projection direction

- Orthogonal to image plane or not
- Along principal axes of object or not

Parallel projections

Orthogonal			
Fold-out oblique			
■ Horizontal oblique			
Vertical oblique			
Non orthogonal $_$			
Oblique			
Axonometric			
Orthographic 🔨 🔍			
Isometric			
Others			

Orthogonal

Direction

- Perpendicular to image plane
- Along one principal direction

True shape for faces parallel to image plane

Orthogonal

Direction

- Perpendicular to image plane
- Along one principal direction

True shape for objects parallel to image plane

Typically engineering

Orthogonal

Amphora, 6th century BC

Orthogonal

Telephoto

As the hijack bargaining goes on under the sweltering sun...

Orthogonal

Fold-out oblique

Fold-out oblique

Horizontal oblique

Vertical oblique

Direction

■ 45°, parallel to one principal face (top or side)

True shape for 2 faces with 45° projection rays

- Horizontal: Shrink/stretch *top* face at other angles
- Vertical: Shrink/stretch *side* face at other angles

Mainly interesting for secondary geometry

Horizontal oblique

Folk art

Horizontal oblique

Vertical oblique

Vertical oblique

Vertical oblique

Juan Gris, Breakfast, 1914

Vertical oblique

Vertical oblique

Andre Kertesz, Tulipe Melancolique

Non orthogonal

Direction

non orthogonal to picture plane

Oblique

- Picture plane parallel to front
- True shape for front face

Axonometric

- True shape for top face
- True length for up direction
- Direction 45° of the picture plane

7)

Oblique

Chinese paintings 12th century

Axonometric

Axonometric

- Like vertical oblique, but object turned 45° to picture plane
 True shape for top face
- True length for up direction

Axonometric

Le Corbusier was a big fan

Axonometric

James Stirling, 1953

Orthographic

Direction

- Orthogonal to picture plane
- Along no principal axes

Isometric

Direction along the average of the principal axes

0

True lengths along 3 axes

Others

- Generic orthographic
- Nothing preserved, rarely used

Isometric vs. axonometric

Isometric

- No true shape
- True lengths in 3 directions
- Less distortion

Axonometric

- True shape for top face
- True length for up direction

Linear perspective

Foreshortening The spectator is "immersed"

One point Two points Three points

Primary geometry

Trace rays from object, through image plane, into eye

1-point perspective

Central focus Preserves horizontals and verticals

1-point perspective

1-point perspective

Unknown artist Ideal city, 15th

1-point perspective

Interior of St Bavo's church at Haarlem, Pieter Jansz Saenredam, 1648

Optical center is not always the center of the image

Requires view camera to adjust angle of film plane

2-point perspective

Objects stand out of the picture Preserves verticals

3-point perspective

Dramatic 3D effect

The generic case, nothing preserved

Historically, seldom used in art or technical drawing

Perspective Distortion

Perspective distortion

Wide angle projection Does not preserve subjective size

Perspective distortion

Wide angle projection Does not preserve subjective size

Perspective distortion

Wide angle projection Distorts shape

Perspective distortion

Portrait: distortion with wide angle and telephoto

Wide angle

Telephoto

Perspective distortion

The sphere is projected as an ellipse Symmetry is not preserved

Perspective distortion

The sphere is projected as an ellipse Symmetry is not preserved

Perspective distortion

<image>

Non-Linear Projections

Fish-eye

Fish-eye vs. wide angle

Curved perspective

Curved perspective

HD View

http://research.microsoft.com/ivm/HDView/HDGigapixel.htm

Optimizing the Projection

<image>

Viewing Sphere

Stereographic Projection

Cylindrical Projection

Goal

Given a wide-angle image, produce a projection that preserves straight lines in the scene and the shapes of

Our Approach

- 1. Mesh the viewing sphere
- 2. Define mapping constraints
- 3. Optimize energy function

Conformality Straight lines Smoothness

Optimizing Content-Preserving Projections for Wide-Angle Images

> Robert Carroll University of California, Berkeley Maneesh Agrawala University of California, Berkeley Aseem Agarwala Adobe Systems, Inc.

