
1

Spatial Layout

M h A lManeesh Agrawala

CS 294-10: Visualization

Spring 2010

Announcements: Ben Shneiderman

Speaking: March 3, 2010

Noon – 1pm

Banatao Auditorium, Dai Hall

Please attend lecture instead
f lof class

Assignment 4: Visualization Software

1. Describe data and
storyboard interface
due March 1 (before class)

Create an interactive visualization application – you
choose data domain and visualization technique.

2. Implement interface and
produce final writeup
due March 8 (before class)

3. Submit the application and
a final writeup on the wiki

Can work alone or in pairs
Final write up due before class on Mar 8, 2010

Final project
Design new visualization method

 Pose problem, Implement creative solution

Deliverables
 Implementation of solution
 8-12 page paper in format of conference paper submission
 2 design discussion presentationsg p

Schedule
 Project proposal: 3/29
 Initial problem presentation: 3/31
 Midpoint design discussion: TBD
 Final paper and presentation: TBD

Grading
 Groups of up to 3 people, graded individually
 Clearly report responsibilities of each member

2

Example: Timeline label layout Problem

Input: Set of graphic elements (scene description)

Goal: Select visual attributes for elements
 Position

 Orientation

 Size

 Color

 …

Topics

Direct rule-based methods

Constraint satisfaction

Optimization

Example-based methods
Direct Rule-Based Methods

3

Rule-based timeline labeling

 Alternate above/below line

 Center labels with respect to point on line

10 labels

Rule-based timeline labeling

 Alternate above/below line

 Center labels with respect to point on line

20 labels

Excentric labeling [Fekete & Plaisant 99]

http://www.cs.umd.edu/hcil/excentric/

Dynamic space management [Bell 00]

Manage free space on desktop to prevent window overlap

4

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
 Elements are axis-aligned rectangles

 Keep track of largest empty space rectangles

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
 Elements are axis-aligned rectangles

 Keep track of largest empty space rectangles

Pros and cons

Pros
 Designed to run extremely quickly

 Simple layout algorithms are easy to code

ConsCons
 Complex layouts require large rule bases with

lots of special cases

Linear Constraint
Satisfaction

5

Network of layout constraints

Constraints

[from Lok and Feiner 01]

Network Two possible layouts

Constraints as linear equations

L l tiLocal propagation
 Set any variable
 Update other variables to maintain constraints

One-way
 Each constraint has 1 output variable
 Update output when any input changes

Multi-way
 Each constraint can be written so that any variable is output
 More complicated to maintain

One-way constraints

One-way constraints form a directed acyclic graph (DAG). Given the
value for any variable we propagate it’s value locally through the graph
updating the other variable.

Page layout example [Weitzman and Wittenburg 94]

6

Adaptive document layout [Jacobs 03]

Users authors templates which use one-way constraints
to adapt to changes in page size

ADL template authoring [Jacobs 03]

Pros and cons

Pros
 Often run fast (at least one-way constraints)

 Constraint solving systems are available online

 Can be easier to specify relative layout
constraints than to code direct layout algorithm

Cons
 Easy to over-constrain the problem

 Constraint solving systems can only solve
some types of layout problems

 Difficult to encode desired layout in terms of
mathematical constraints

7

Optimization

Demo

Layout as optimization

Scene description
 Geometry: polygons, bounding boxes, lines, points, etc.

 Layout parameters: position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify …
 Initialize/Perturb functions: Form a layout

 Penalty function: Evaluate quality of layout

 .. and find layout that minimizes penalty

Optimization algorithms

There are lots of them:
line search, Newton’s method, A*, tabu, gradient descent,
conjugate gradient, linear programming, quadratic
programming, simulated annealing, …

Differences
 Speed

 Memory

 Properties of the solution

 Requirements

8

Simulated annealing
currL  Initialize()
while(! termination condition)

newL  Perturb(currL)
currE  Penalty(currL)
newE  Penalty(newL)
if((newE < currE) or
(rand[0,1) < e-E/T))

Form initial layout

Perturb to form new layout

Evaluate quality of layouts

Always accept lower penalty

Small probability of accepting
then currL  newL

Decrease(T)

Perturb: Efficiently cover layout design space

Penalty: Describes desirable/undesirable layout features

Small probability of accepting
higher penalty

Scene description
Geometry

 Pie slices
anchors for labels

 Labels

bounding boxes

 Position (x, y)

 Leader line

 Word wrap
 Color

 Alignment

 Orientation

Layout parameters

 Orientation

 Scale

9

Position (x, y)
 Leader line

 Word wrap
 Color

 Alignment

Orientation

Many dimensions  large space

 Scale

2D x 50 labels 
100D space

10

Penalties
Overlap & Distance
 Label – anchor slice

 Label – other slices

 Label – label

Leader lines
 Length

 Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

Overlap: Label – Anchor Slice

Avoid partial overlap: No penalty if fully inside /outside

Overlap: Label – Anchor Slice

Penalize partial overlap by overlap amount

Distance: Label – Anchor Slice

Ensure label near center of edge of anchor slice

11

Distance: Label – Anchor Slice

d

Minimize distance d

Penalties
Overlap & Distance
 Label – anchor slice

 Label – other slices

 Label – label

Leader lines
 Length

 Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

Demo Pros and cons

Pros
 Much more flexible than linear constraint

solving systems

Cons
C Can be relatively slow to converge

 Need to set penalty function parameters
(weights)

 Difficult to encode desired layout in terms of
mathematical penalty functions

12

Design principles

Sometimes specified in design books
 Tufte, Few, photography manuals, cartography books …

 Often specified at a high level

 Challenge is to transform principles into constraints or
penalties

Cartographer Eduard Imhof’s labeling heurists transformed into penalty
functions for an optimization based point labeling system [Edmondson 97]

Example-Based Methods

Preference elicitation [Gajos and Weld 05]

Learn characteristics of good designs
 Generate designs based on a parameterized design space

 Ask designers if they are good or bad

 Learn good parameters values based on responses

Nonlinear Inverse Opt. [Vollick et al. 07]

Learn label layout style from single example

Horizontal/Vertical

13

Nonlinear Inverse Opt. [Vollick et al. 07]

Learn label layout style from single example

Parallel Leader Lines

Artistic Resizing

A Technique for Rich
Scale-Sensitive Vector Graphics

Pierre Dragicevic

Stéphane Chatty

David Thevenin

Jean-Luc Vinot
Direction

Générale de
l’Aviation

Civile

The Resizing Problem

 Fixed
size

 Naive Naive
scaling

 Artistic
resizing

Expressing Artistic Resizing

 Commonly described using formulae

w

h
yL

xL
r

 xL = (w-wL) / 2
 yL = (h-hL) / 2

 wB = 5
 hB = 5

 These formulae are:

 Translated into code by the programmer
 Or used as an input to constraint-solving systems

h

wL

hL

hB

wB

 wL = 20
 hL = 10  r = 20

14

Example-Based Approach

1. Designers produce variants
using their authoring tool

2. System interprets
the example set

Artistic Resizing
How does it work?

 Assumes the exclusive use of:

 Copy & paste for adding new examples
 Affine transformation tools (move, scale, rotate,

shear)

 Based on local interpolation of transformations

T1 T1’

Artistic Resizing
How does it work?

 Each variant of T1 is associated with
the example’s bounding box

T1 T1’

?

T1’’ T1’’’

Artistic Resizing
How does it work?

 Problem of multivariate interpolation

T1’
T1’’

width

height

T1’’’transf.

T1

?

15

Pros and cons

Pros
 Often much easier to specify desired layout via

example

Cons
 Usually requires underlying model

 Model will constrain types of layouts possible

 Large design spaces likely to require lots of
examples to learn parameters well

