
1

Spatial Layout

M h A lManeesh Agrawala

CS 294-10: Visualization

Spring 2010

Announcements: Ben Shneiderman

Speaking: March 3, 2010

Noon – 1pm

Banatao Auditorium, Dai Hall

Please attend lecture instead
f lof class

Assignment 4: Visualization Software

1. Describe data and
storyboard interface
due March 1 (before class)

Create an interactive visualization application – you
choose data domain and visualization technique.

2. Implement interface and
produce final writeup
due March 8 (before class)

3. Submit the application and
a final writeup on the wiki

Can work alone or in pairs
Final write up due before class on Mar 8, 2010

Final project
Design new visualization method

 Pose problem, Implement creative solution

Deliverables
 Implementation of solution
 8-12 page paper in format of conference paper submission
 2 design discussion presentationsg p

Schedule
 Project proposal: 3/29
 Initial problem presentation: 3/31
 Midpoint design discussion: TBD
 Final paper and presentation: TBD

Grading
 Groups of up to 3 people, graded individually
 Clearly report responsibilities of each member

2

Example: Timeline label layout Problem

Input: Set of graphic elements (scene description)

Goal: Select visual attributes for elements
 Position

 Orientation

 Size

 Color

 …

Topics

Direct rule-based methods

Constraint satisfaction

Optimization

Example-based methods
Direct Rule-Based Methods

3

Rule-based timeline labeling

 Alternate above/below line

 Center labels with respect to point on line

10 labels

Rule-based timeline labeling

 Alternate above/below line

 Center labels with respect to point on line

20 labels

Excentric labeling [Fekete & Plaisant 99]

http://www.cs.umd.edu/hcil/excentric/

Dynamic space management [Bell 00]

Manage free space on desktop to prevent window overlap

4

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
 Elements are axis-aligned rectangles

 Keep track of largest empty space rectangles

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
 Elements are axis-aligned rectangles

 Keep track of largest empty space rectangles

Pros and cons

Pros
 Designed to run extremely quickly

 Simple layout algorithms are easy to code

ConsCons
 Complex layouts require large rule bases with

lots of special cases

Linear Constraint
Satisfaction

5

Network of layout constraints

Constraints

[from Lok and Feiner 01]

Network Two possible layouts

Constraints as linear equations

L l tiLocal propagation
 Set any variable
 Update other variables to maintain constraints

One-way
 Each constraint has 1 output variable
 Update output when any input changes

Multi-way
 Each constraint can be written so that any variable is output
 More complicated to maintain

One-way constraints

One-way constraints form a directed acyclic graph (DAG). Given the
value for any variable we propagate it’s value locally through the graph
updating the other variable.

Page layout example [Weitzman and Wittenburg 94]

6

Adaptive document layout [Jacobs 03]

Users authors templates which use one-way constraints
to adapt to changes in page size

ADL template authoring [Jacobs 03]

Pros and cons

Pros
 Often run fast (at least one-way constraints)

 Constraint solving systems are available online

 Can be easier to specify relative layout
constraints than to code direct layout algorithm

Cons
 Easy to over-constrain the problem

 Constraint solving systems can only solve
some types of layout problems

 Difficult to encode desired layout in terms of
mathematical constraints

7

Optimization

Demo

Layout as optimization

Scene description
 Geometry: polygons, bounding boxes, lines, points, etc.

 Layout parameters: position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify …
 Initialize/Perturb functions: Form a layout

 Penalty function: Evaluate quality of layout

 .. and find layout that minimizes penalty

Optimization algorithms

There are lots of them:
line search, Newton’s method, A*, tabu, gradient descent,
conjugate gradient, linear programming, quadratic
programming, simulated annealing, …

Differences
 Speed

 Memory

 Properties of the solution

 Requirements

8

Simulated annealing
currL Initialize()
while(! termination condition)

newL Perturb(currL)
currE Penalty(currL)
newE Penalty(newL)
if((newE < currE) or
(rand[0,1) < e-E/T))

Form initial layout

Perturb to form new layout

Evaluate quality of layouts

Always accept lower penalty

Small probability of accepting
then currL newL

Decrease(T)

Perturb: Efficiently cover layout design space

Penalty: Describes desirable/undesirable layout features

Small probability of accepting
higher penalty

Scene description
Geometry

 Pie slices
anchors for labels

 Labels

bounding boxes

 Position (x, y)

 Leader line

 Word wrap
 Color

 Alignment

 Orientation

Layout parameters

 Orientation

 Scale

9

Position (x, y)
 Leader line

 Word wrap
 Color

 Alignment

Orientation

Many dimensions large space

 Scale

2D x 50 labels
100D space

10

Penalties
Overlap & Distance
 Label – anchor slice

 Label – other slices

 Label – label

Leader lines
 Length

 Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

Overlap: Label – Anchor Slice

Avoid partial overlap: No penalty if fully inside /outside

Overlap: Label – Anchor Slice

Penalize partial overlap by overlap amount

Distance: Label – Anchor Slice

Ensure label near center of edge of anchor slice

11

Distance: Label – Anchor Slice

d

Minimize distance d

Penalties
Overlap & Distance
 Label – anchor slice

 Label – other slices

 Label – label

Leader lines
 Length

 Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

Demo Pros and cons

Pros
 Much more flexible than linear constraint

solving systems

Cons
C Can be relatively slow to converge

 Need to set penalty function parameters
(weights)

 Difficult to encode desired layout in terms of
mathematical penalty functions

12

Design principles

Sometimes specified in design books
 Tufte, Few, photography manuals, cartography books …

 Often specified at a high level

 Challenge is to transform principles into constraints or
penalties

Cartographer Eduard Imhof’s labeling heurists transformed into penalty
functions for an optimization based point labeling system [Edmondson 97]

Example-Based Methods

Preference elicitation [Gajos and Weld 05]

Learn characteristics of good designs
 Generate designs based on a parameterized design space

 Ask designers if they are good or bad

 Learn good parameters values based on responses

Nonlinear Inverse Opt. [Vollick et al. 07]

Learn label layout style from single example

Horizontal/Vertical

13

Nonlinear Inverse Opt. [Vollick et al. 07]

Learn label layout style from single example

Parallel Leader Lines

Artistic Resizing

A Technique for Rich
Scale-Sensitive Vector Graphics

Pierre Dragicevic

Stéphane Chatty

David Thevenin

Jean-Luc Vinot
Direction

Générale de
l’Aviation

Civile

The Resizing Problem

 Fixed
size

 Naive Naive
scaling

 Artistic
resizing

Expressing Artistic Resizing

 Commonly described using formulae

w

h
yL

xL
r

 xL = (w-wL) / 2
 yL = (h-hL) / 2

 wB = 5
 hB = 5

 These formulae are:

 Translated into code by the programmer
 Or used as an input to constraint-solving systems

h

wL

hL

hB

wB

 wL = 20
 hL = 10 r = 20

14

Example-Based Approach

1. Designers produce variants
using their authoring tool

2. System interprets
the example set

Artistic Resizing
How does it work?

 Assumes the exclusive use of:

 Copy & paste for adding new examples
 Affine transformation tools (move, scale, rotate,

shear)

 Based on local interpolation of transformations

T1 T1’

Artistic Resizing
How does it work?

 Each variant of T1 is associated with
the example’s bounding box

T1 T1’

?

T1’’ T1’’’

Artistic Resizing
How does it work?

 Problem of multivariate interpolation

T1’
T1’’

width

height

T1’’’transf.

T1

?

15

Pros and cons

Pros
 Often much easier to specify desired layout via

example

Cons
 Usually requires underlying model

 Model will constrain types of layouts possible

 Large design spaces likely to require lots of
examples to learn parameters well

