Interaction

Maneesh Agrawala

CS 294-10: Visualization
Spring 2010

Assignment 2: Visualization Design

Perception

Steven’s power law

$S = I^p$

p < 1: underestimate
p > 1: overestimate

(graph from Wilkinson 99, based on Stevens 61)
Relative magnitude estimation

<table>
<thead>
<tr>
<th>Most accurate</th>
<th>Least accurate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position (common) scale</td>
<td>Color hue-saturation-density</td>
</tr>
<tr>
<td>Position (non-aligned) scale</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
</tr>
</tbody>
</table>
One-dimensional: Lightness

- White
- Black
- White
- Black
- White
- Black

One-dimensional: Shape

- Circle
- Square
- Circle
- Square
- Circle
- Square

Correlated dims: Shape or lightness

- Circle
- Square
- Circle
- Square
- Circle
- Square

Orthogonal dims: Shape & lightness

- Circle
- Square
- Circle
- Square
- Circle
- Square
Speeded classification

Redundancy gain
Facilitation in reading one dimension when the other provides redundant information

Filtering interference
Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral
Filtering interference and redundancy gain

Separable
No interference or gain

Configural
Only interference, but no redundancy gain

Asymmetrical
One dimension separable from other, not vice versa

Stroop effect – Color naming influenced by word identity, but word naming not influenced by color

Summary of Integral-Separaible

(Figure 5.25, Color Plate 10, Ware 00)
Set

Each card has 4 features:
- Color
- Symbol
- Number
- Shading/Texture

A set consists of 3 cards in which each feature is the SAME or DIFFERENT on each card.

Adrien Treuille's applet
http://www.cs.washington.edu/homes/treuille/resc/set

Gestalt

Principles

- figure/ground
- proximity
- similarity
- symmetry
- connectedness
- continuity
- closure
- common fate
- transparency

Figure/Ground

Ambiguous

Principle of surroundedness

Principle of relative size

http://www.aber.ac.uk/media/Modules/MC1022/figureground.html
Figure/Ground

Ambiguous

Unambiguous

http://www.aber.ac.uk/media/Modules/MC10220/visper06.html

Proximity

[Ware 00]

Similarity

Rows dominate due to similarity [from Ware 04]

Symmetry

Bilateral symmetry gives strong sense of figure [from Ware 04]
Connectedness

Connectedness overrules proximity, size, color shape [from Ware 04]

Continuity

We prefer smooth not abrupt changes [from Ware 04]

Connections are clearer with smooth contours [from Ware 04]

Continuity: Vector fields

Prefer field that shows smooth continuous contours [from Ware 04]

Closure

We see a circle behind a rectangle, not a broken circle [from Ware 04]

Illusory contours [from Durand 02]
Common fate

Dots moving together are grouped

http://coe.sdsu.edu/eet/articles/visualperc1/start.htm

Transparency

Requires continuity and proper color correspondence (from Ware 04)

Layering and Small Multiples

Layering: Gridlines

Signal and background compete above, as an electrocardiogram trace-line becomes caught up in a thick grid. Below, the screened-down grid stays behind traces from each of 12 monitoring leads.*

Electrocardiogram tracelines (from Tufte 90)
Layering: Gridlines

Stravinsky score [from Tufte 90]

Layering: Color and line width

IBM Series III Copier [from Tufte 90]

Small multiples

[Figure 2.11, p. 38, MacEachren 95]

Small multiples

Operating trains. Redrawn by Tufte to emphasize colored lights. [from Tufte 90]
Change blindness

[Example from Palmer 99, originally due to Rock]

Change detection

Rensink’s demonstration

http://people.usd.edu/~schieber/coglab/ChangeBlindness.html
Summary

Choosing effective visual encodings requires knowledge of visual perception

Visual features/attributes
- Individual attributes often preattentive
- Multiple attributes may be separable, often integral

Gestalt principles provide higher level design guidelines

We don’t always see everything that is there

Interaction

Gulfs of execution & evaluation

<table>
<thead>
<tr>
<th>Conceptual model</th>
<th>Real world</th>
<th>Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Evaluation</td>
</tr>
</tbody>
</table>

Gulf of evaluation

Real world: x,y correlated?

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

[Norman 1986]
Gulf of evaluation

Real world:
Conceptual model: x, y correlated?

Evaluation

Gulf of execution

Real world:
Conceptual model: Draw a scatterplot

Execution

Gulf of evaluation

Real world:
Conceptual model: x, y correlated?

Evaluation

Gulf of execution

Real world:
Conceptual model: Draw a scatterplot

Execution

$\rho = -0.29$
Topics
Brushing and linking
Dynamic queries
Rearrangements

Brushing and Linking

Highlighting

Focus user attention on a subset of the data within one graph [from Wills 95]

Brushing
- Interactively select subset of data
- See selected data in other views
- Two things (normally views) must be linked to allow for brushing
Baseball statistics [from Wills 95]

- select high salaries
- avg career HRs vs avg career hits (hitting ability)
- avg assists vs avg putouts (fielding ability)
- how long in majors
- distribution of positions played

Linking assists to positions

GGobi: Brushing

http://www.ggobi.org/

Dynamic Queries
Query and results

```
SELECT house
FROM east bay
WHERE price < 1,000,000 AND bedrooms > 2
ORDER BY price
```

<table>
<thead>
<tr>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. For programmers</td>
</tr>
<tr>
<td>2. Rigid syntax</td>
</tr>
<tr>
<td>3. Only shows exact matches</td>
</tr>
<tr>
<td>4. Too few or too many hits</td>
</tr>
<tr>
<td>5. No hint on how to reformulate the query</td>
</tr>
<tr>
<td>6. Slow question-answer loop</td>
</tr>
<tr>
<td>7. Results returned as table</td>
</tr>
</tbody>
</table>

HomeFinder

1. Visual representation of objects and actions
2. Rapid, incremental and reversible actions
3. Selection by pointing (not typing)
4. Immediate and continuous display of results
Alphaslider

Title: Moonstruck

FilmFinder

[Ahlberg and Schneiderman 94]

FilmFinder

[Ahlberg and Schneiderman 93]

FilmFinder

[Ahlberg and Schneiderman 93]

FilmFinder

[Ahlberg and Schneiderman 93]
Cellphones

http://www.myrateplan.com/cellphones/