Data and Image Models

Maneesh Agrawala

CS 294-10: Visualization
Spring 2010

Last Time: The Purpose of Visualization

Three functions of visualizations

Record information
- Photographs, blueprints, …

Support reasoning about information (analyze)
- Process and calculate
- Reason about data
- Feedback and interaction

Convey information to others (present)
- Share and persuade
- Collaborate and revise
- Emphasize important aspects of data

Record information

Gallop, Bay Horse “Daisy” [Muybridge 1884-86]
Analysis: Challenger

Visualizations drawn by Tufte show how low temperatures damage O-rings [Tufte 97]

Communicate: Exports and Imports

[Playfair 1786]

Announcements

Auditors, please enroll in the class (1 unit, P/NP)
- Requirements: Come to class and participate (online as well)
- Requirements: Assignment 1 and 2

Class participation requirements
- Complete readings before class
- In-class discussion
- Post at least 1 discussion substantive comment/question on wiki within a week of each lecture

All, add yourself to participants page on the wiki

Class wiki
http://vis.berkeley.edu/courses/cs294-10-sp10Wiki/

Assignment 1: Good and Bad Vis.

Find two visualizations one good and one bad

Use original sources
- Journals
- Science magazines
- Newspapers
- Textbooks

Make wiki page
- Clearly mark as good or bad
- Provide short explanation
- Be prepared to succinctly describe in class on Mon Sep. 8

Due before class today
Assignment 2: Visualization Design
Due before class on Feb 8, 2010

Data and Image Models

The big picture

- task
- data
 - physical type
 - int, float, etc.
 - abstract type
 - nominal, ordinal, etc.
- domain
 - metadata
 - semantics
 - conceptual model

Processing

- algorithms

Image

- visual channel
- retinal variables

Mapping

- visual encoding
- visual metaphor

Topics

- Properties of data or information
- Properties of the image
- Mapping data to images

[based on slide from Munzner]
Data models vs. Conceptual models

Data models are low level descriptions of the data
- Math: Sets with operations on them
 - Example: integers with + and \times operators

Conceptual models are mental constructions
- Include semantics and support reasoning

Examples (data vs. conceptual)
- (1D floats) vs. Temperature
- (3D vector of floats) vs. Space

Taxonomy
- 1D (sets and sequences)
- Temporal
- 2D (maps)
- 3D (shapes)
- nD (relational)
- Trees (hierarchies)
- Networks (graphs)

Are there others?

Physical types
- Characterized by storage format
- Characterized by machine operations

Example:
- bool, short, int32, float, double, string, …

Abstract types
- Provide descriptions of the data
- May be characterized by methods/attributes
- May be organized into a hierarchy

Example:
- plants, animals, metazoans, …
Nominal, ordinal and quantitative

N - Nominal (labels)
- Fruits: Apples, oranges, …

O - Ordered
- Quality of meat: Grade A, AA, AAA

Q - Interval (Location of zero arbitrary)
- Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45)
- Like a geometric point. Cannot compare directly
- Only differences (i.e. intervals) may be compared

Q - Ratio (zero fixed)
- Physical measurement: Length, Mass, Temp, …
- Counts and amounts
- Like a geometric vector, origin is meaningful

S. S. Stevens, On the theory of scales of measurements, 1946

From data model to N,O,Q data type

Data model
- 32.5, 54.0, -17.3, …
- floats

Conceptual model
- Temperature

Data type
- Burned vs. Not burned (N)
- Hot, warm, cold (O)
- Continuous range of values (Q)

[based on slide from Munzner]
Relational data model

- Records are fixed-length tuples
- Each column (attribute) of tuple has a domain (type)
- Relation is schema and a table of tuples
- Database is a collection of relations

Relational algebra [Codd]

- Data transformations (SQL)
 - Selection (SELECT)
 - Projection (WHERE)
 - Sorting (ORDER BY)
 - Aggregation (GROUP BY, SUM, MIN, …)
 - Set operations (UNION, …)
 - Join (INNER JOIN)

Statistical data model

- Variables or measurements
- Categories or factors or dimensions
- Observations or cases
Statistical data model

Variables or measurements
Categories or factors or dimensions
Observations or cases

<table>
<thead>
<tr>
<th>Month</th>
<th>Control</th>
<th>Placebo</th>
<th>300 mg</th>
<th>450 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>165</td>
<td>163</td>
<td>166</td>
<td>168</td>
</tr>
<tr>
<td>April</td>
<td>162</td>
<td>159</td>
<td>161</td>
<td>163</td>
</tr>
<tr>
<td>May</td>
<td>164</td>
<td>158</td>
<td>161</td>
<td>153</td>
</tr>
<tr>
<td>June</td>
<td>162</td>
<td>161</td>
<td>158</td>
<td>160</td>
</tr>
<tr>
<td>July</td>
<td>166</td>
<td>158</td>
<td>160</td>
<td>148</td>
</tr>
<tr>
<td>August</td>
<td>163</td>
<td>158</td>
<td>157</td>
<td>150</td>
</tr>
</tbody>
</table>

Blood Pressure Study (4 treatments, 6 months)

Dimensions and measures

Independent vs. dependent variables
- Example: \(y = f(x,a) \)
- Dimensions: Domain(x) x Domain(a)
- Measures: Range(y)

Dimensions:
- Discrete variables describing data
dates, categories of values (independent vars.)

Measures:
- Data values that can be aggregated
numbers to be analyzed (dependent vars)

Aggregations:
- sum, count, average, std. dev.

Data cube

Measure
Width
Length
Species

I. setosa
I. versicolor
I. virginica

Petal
Sepal
Organ
Projections summarize data

Multiscale visualization using data cubes [Stolte et al. 02]

Visual language is a sign system

Images perceived as a set of signs
Sender encodes information in signs
Receiver decodes information from signs

Semiology of Graphics, 1983

Information in position

1. A, B, C are distinguishable
2. B is between A and C.
3. BC is twice as long as AB.

:. Encode quantitative variables

"Resemblance, order and proportional are the three signfields in graphics." - Bertin
Note: Bertin does not consider 3D or time
Note: Card and Mackinlay extend the number of vars.

Information in color and value

Value is perceived as ordered
- Encode ordinal variables (O)

Hue is normally perceived as unordered
- Encode nominal variables (N) using color

Bertins’ “Levels of Organization”

<table>
<thead>
<tr>
<th>Variable</th>
<th>N Nominal</th>
<th>O Ordered</th>
<th>Q Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Size</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Value</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Texture</td>
<td>N</td>
<td>O</td>
<td>Q</td>
</tr>
<tr>
<td>Color</td>
<td>N</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Bertin actually breaks visual variables down into differentiating (↓) and associating (→)
Encoding rules

Univariate data

A B C

1

Variable

Bivariate data

A B C

1 2

Scatter plot is common
Trivariate data

A B C

1 2 3

3D scatter plot is possible

Three variables

Two variables [x,y] can map to points
- Scatterplots, maps, …

Third variable [z] must use …
- Color, size, shape, …

Large design space (visual metaphors)

[Bertin, Graphics and Graphic Information Processing, 1981]

Multidimensional data

How many variables can be depicted in an image?

[A B C]
Multidimensional data

How many variables can be depicted in an image?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"With up to three rows, a data table can be constructed directly as a single image.... However, an image has only three dimensions. And this barrier is impassible."

Bertin

Deconstructions

Stock chart from the late 90s

- x-axis: time (Q)
- y-axis: price (Q)
Playfair 1786

- x-axis: year (Q)
- y-axis: currency (Q)
- color: imports/exports (N, O)

Wattenberg 1998

- rectangle size: market cap (Q)
- rectangle position: market sector (N), market cap (Q)
- color hue: loss vs. gain (N, O)
- color value: magnitude of loss or gain (Q)

http://www.smartmoney.com/marketmap/
Minard 1869: Napoleon’s march

Single axis composition

Mark composition

y-axis: temperature (Q)

x-axis: time (Q)

= temp over time (Q x Q)

Mark composition

y-axis: longitude (Q)

x-axis: latitude (Q)

width: army size (Q)

= army position (Q x Q) and army size (Q)
Minard 1869: Napoleon’s march

Depicts at least 5 quantitative variables
Any others?

Combinatorics of encodings

Challenge:
Pick the best encoding from the exponential number of possibilities \((n+1)^8\)

Principle of Consistency:
The properties of the image (visual variables) should match the properties of the data.

Principle of Importance Ordering:
Encode the most important information in the most effective way.
Mackinlay’s expressiveness criteria

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e., the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Cannot express the facts

A one-to-many (1 → N) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position.

Expresses facts not in the data

A length is interpreted as a quantitative value; therefore, the length of a bar says something untrue about N data.

Mackinlay’s effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Subject of perception lecture

[Mackinlay, APT, 1986]
Mackinlay’s ranking

<table>
<thead>
<tr>
<th>Quantitative</th>
<th>Ordinal</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density</td>
<td>Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Saturation</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td>Connection</td>
<td>Containment</td>
</tr>
<tr>
<td>Area</td>
<td>Length</td>
<td>Shape</td>
</tr>
<tr>
<td>Volume</td>
<td>Angle</td>
<td>Shape</td>
</tr>
<tr>
<td>Density</td>
<td>Slope</td>
<td>Shape</td>
</tr>
<tr>
<td>Saturation</td>
<td>Area</td>
<td>Shape</td>
</tr>
<tr>
<td>Hue</td>
<td>Volume</td>
<td>Shape</td>
</tr>
<tr>
<td>Texture</td>
<td>Volume</td>
<td>Shape</td>
</tr>
<tr>
<td>Containment</td>
<td>Shape</td>
<td>Shape</td>
</tr>
<tr>
<td>Shape</td>
<td>Shape</td>
<td>Shape</td>
</tr>
</tbody>
</table>

Conjectured effectiveness of the encoding

Mackinlay’s design algorithm

- User formally specifies data model and type
- APT searches over design space
 - Tests expressiveness of each visual encoding
 - Generates image for encodings that pass test
 - Tests perceptual effectiveness of resulting image
- Outputs most effective visualization

Limitations

- Does not cover many visualization techniques
 - Bertin and others discuss networks, maps, diagrams
 - They do not consider 3D, animation, illustration, photography, …
- Does not model interaction

Summary

- Formal specification
 - Data model
 - Image model
 - Encodings mapping data to image
- Choose expressive and effective encodings
 - Formal test of expressiveness
 - Experimental tests of perceptual effectiveness