
1

Identifying Design Principles

Maneesh Agrawala
Jessica Hullman

CS 294-10: Visualization

Fall 2014

Announcements

2

Final project
Design new visualization method

  Pose problem, Implement creative solution

Deliverables
  Implementation of solution
  8-12 page paper in format of conference paper submission
  1 or 2 design discussion presentations

Schedule
  Project proposal: 10/27
  Project presentation: 11/10, 11/12
  Final paper and presentation: TBD, likely 12/1-12/5

Grading
  Groups of up to 3 people, graded individually
  Clearly report responsibilities of each member

Spatial Layout

3

Example: Timeline label layout

Problem
Input: Set of graphic elements (scene description)
Goal: Select visual attributes for elements

  Position
  Orientation
  Size
  Color
  …

4

Approaches
Direct rule-based methods
Constraint satisfaction
Optimization
Example-based methods

Direct Rule-Based Methods

5

Rule-based timeline labeling

  Alternate above/below line
  Center labels with respect to point on line

10 labels

Rule-based timeline labeling

  Alternate above/below line
  Center labels with respect to point on line

20 labels

6

Excentric labeling [Fekete & Plaisant 99]

http://www.cs.umd.edu/hcil/excentric/

Dynamic space management [Bell 00]

Manage free space on desktop to prevent window overlap

7

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
  Elements are axis-aligned rectangles
  Keep track of largest empty space rectangles

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
  Elements are axis-aligned rectangles
  Keep track of largest empty space rectangles

8

Pros and cons
Pros

  Designed to run extremely quickly
  Simple layout algorithms are easy to code

Cons
  Complex layouts require large rule bases with

lots of special cases

Linear Constraint
Satisfaction

9

Network of layout constraints

[from Lok and Feiner 01]

Constraints

Network Two possible layouts

Constraints as linear equations

Local propagation
  Set any variable
  Update other variables to maintain constraints

One-way
  Each constraint has 1 output variable
  Update output when any input changes

Multi-way
  Each constraint can be written so that any variable is output
  More complicated to maintain

10

One-way constraints

One-way constraints form a directed acyclic graph (DAG). Given the
value for any variable we propagate it’s value locally through the graph
updating the other variable.

Page layout example [Weitzman and Wittenburg 94]

11

Adaptive document layout [Jacobs 03]

Users authors templates which use one-way constraints to adapt to
changes in page size

ADL template authoring [Jacobs 03]

12

Pros and cons
Pros

  Often run fast (at least one-way constraints)
  Constraint solving systems are available online
  Can be easier to specify relative layout

constraints than to code direct layout algorithm

Cons
  Easy to over-constrain the problem
  Constraint solving systems can only solve

some types of layout problems
  Difficult to encode desired layout in terms of

mathematical constraints

13

Optimization

Demo

14

Layout as optimization
Scene description

  Geometry: polygons, bounding boxes, lines, points, etc.

  Layout parameters: position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify …
  Initialize/Perturb functions: Form a layout
  Penalty function: Evaluate quality of layout

  .. and find layout that minimizes penalty

Optimization algorithms
There are lots of them:

 line search, Newton’s method, A*, tabu, gradient
descent, conjugate gradient, linear programming,
quadratic programming, simulated annealing, …

Differences

  Speed
  Memory
  Properties of the solution
  Requirements

15

Simulated annealing
currL ß Initialize()
while(! termination condition)
 newL ß Perturb(currL)
 currE ß Penalty(currL)
 newE ß Penalty(newL)
 if((newE < currE) or
 (rand[0,1) < e-ΔE/T))
 then currL ß newL
 Decrease(T)

Perturb: Efficiently cover layout design space
Penalty: Describes desirable/undesirable layout features

Form initial layout

Perturb to form new layout

Evaluate quality of layouts

Always accept lower penalty
Small probability of accepting

higher penalty

Scene description
Geometry
  Pie slices
 anchors for labels

  Labels
 bounding boxes

16

  Position (x, y)
  Leader line
  Word wrap
  Color
  Alignment
  Orientation
  Scale

Layout parameters

17

18

  Position (x, y)
  Leader line
  Word wrap
  Color
  Alignment
 Orientation
  Scale

2D x 50 labels à
 100D space

Many dimensions à large space

19

Penalties
Overlap & Distance
  Label – anchor slice
  Label – other slices
  Label – label

Leader lines
  Length
  Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

Overlap: Label – Anchor Slice

Avoid partial overlap: No penalty if fully inside /outside

20

Overlap: Label – Anchor Slice

Penalize partial overlap by overlap amount

Distance: Label – Anchor Slice

Ensure label near center of edge of anchor slice

21

Distance: Label – Anchor Slice

Minimize distance d

d

Penalties
Overlap & Distance
  Label – anchor slice
  Label – other slices
  Label – label

Leader lines
  Length
  Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

22

Demo

Pros and cons
Pros

  Much more flexible than linear constraint
solving systems

Cons
  Can be relatively slow to converge
  Need to set penalty function parameters

(weights)
  Difficult to encode desired layout in terms of

mathematical penalty functions

23

Design principles
Sometimes specified in design books

  Tufte, Few, photography manuals, cartography books …
  Often specified at a high level
  Challenge is to transform principles into constraints or penalties

Cartographer Eduard Imhof’s labeling heurists transformed into penalty
functions for an optimization based point labeling system [Edmondson 97]

Example-Based Methods

24

Preference elicitation [Gajos and Weld 05]
Learn characteristics of good designs

  Generate designs based on a parameterized design space
  Ask designers if they are good or bad
  Learn good parameters values based on responses

Nonlinear Inverse Opt. [Vollick et al. 07]
Learn label layout style from single example

Horizontal/Vertical

25

Nonlinear Inverse Opt. [Vollick et al. 07]
Learn label layout style from single example

Parallel Leader Lines

Artistic Resizing

A Technique for Rich
Scale-Sensitive Vector Graphics

Pierre Dragicevic

Stéphane Chatty

David Thevenin

Jean-Luc Vinot
Direction

Générale de
l’Aviation

Civile

26

The Resizing Problem

n  Fixed
size

n  Naive
scaling

n  Artistic
resizing

Expressing Artistic Resizing

n  Commonly described using formulae

n  These formulae are:
n  Translated into code by the programmer
n  Or used as an input to constraint-solving systems

w

h

wL

hL

yL

xL
r

hB

wB

• xL = (w-wL) / 2
• yL = (h-hL) / 2
• wL = 20
•  hL = 10

• wB = 5
•  hB = 5

• r = 20

27

Example-Based Approach

1.   Designers produce variants

 using their authoring tool

2.   System interprets

 the example set

Artistic Resizing
 How does it work?

n  Assumes the exclusive use of:
n  Copy & paste for adding new examples
n  Affine transformation tools (move, scale, rotate, shear)

n  Based on local interpolation of transformations

T1 T1’

28

Artistic Resizing
 How does it work?

n  Each variant of T1 is associated with
the example’s bounding box

T1
T1’

?

T1’’ T1’’’

Artistic Resizing
 How does it work?

n  Problem of multivariate interpolation

width

height
T1’

T1’’’

T1’’

transf.

T1

?

29

Pros and cons
Pros

  Often much easier to specify desired layout via
examples

Cons
  Usually requires underlying model
  Model will constrain types of layouts possible
  Large design spaces likely to require lots of

examples to learn parameters well

Identifying Design Principles

30

Good Design Improves Effectiveness

London Underground [Beck 33] Geographic version of map

Good Design Improves Effectiveness

London Underground [Beck 33] Geographic version of map

Design principle:
  Straighten lines to emphasize sequence of stops

Technique used to emphasize/de-emphasize information

31

Approach
Identify design principles

 Cognition and perception

Instantiate design principles

 Principles become constraints that
guide an optimization process

Route maps

Assembly instructions

Route Maps

32

Visualizing Routes

A Better Visualization

33

Cognition of Route Maps
Essential information

  Turning points
  Route topology

Secondary context information

  Local landmarks, cross streets, etc.
  Overview area landmarks, global

shape

Exact geometry less important

  Not apprehended accurately
  Not drawn accurately

[Tversky 81] [Tufte 90] [Tversky 92]

[MacEachren 95] [Denis 97] [Tversky 99]

Design Principles

  Exaggerate road length
  Regularize turning angles
  Simplify road shape

34

LineDrive

Hand-drawn route map LineDrive route map

Map Design via Optimization
Set of graphic elements

 Roads, labels, cross-streets, …

Choose visual attributes
 Position, orientation, size, …
 Distortions increase flexibility

Develop constraints based on
design principles

Simulated annealing
 Perturb: Form a layout
 Score: Evaluate quality
 Minimize score

35

Request for Directions

Shape Simplification

Road Layout

Label Layout

Context Layout

Decoration

LineDrive

Route Finding Service

Route Data

 Route Map

