
1 

Identifying Design Principles 

Maneesh Agrawala 
Jessica Hullman 

 
CS 294-10: Visualization 

Fall 2014 

Announcements 



2 

Final project 
Design new visualization method 

  Pose problem, Implement creative solution 

Deliverables 
  Implementation of solution 
  8-12 page paper in format of conference paper submission 
  1 or 2 design discussion presentations 

Schedule 
  Project proposal: 10/27 
  Project presentation: 11/10, 11/12 
  Final paper and presentation: TBD, likely 12/1-12/5 

Grading 
  Groups of up to 3 people, graded individually 
  Clearly report responsibilities of each member  

Spatial Layout 



3 

Example: Timeline label layout 

Problem 
Input: Set of graphic elements (scene description) 
Goal: Select visual attributes for elements 

  Position 
  Orientation 
  Size 
  Color 
  … 



4 

Approaches 
Direct rule-based methods 
Constraint satisfaction 
Optimization 
Example-based methods 
 

Direct Rule-Based Methods  



5 

Rule-based timeline labeling 

  Alternate above/below line 
  Center labels with respect to point on line 

10 labels 

Rule-based timeline labeling 

  Alternate above/below line 
  Center labels with respect to point on line 

20 labels 



6 

Excentric labeling [Fekete & Plaisant 99] 

http://www.cs.umd.edu/hcil/excentric/ 

Dynamic space management [Bell 00] 

Manage free space on desktop to prevent window overlap 



7 

Dynamic space management [Bell 00] 

Goal: Place new elements to avoid overlap 
  Elements are axis-aligned rectangles 
  Keep track of largest empty space rectangles 

Dynamic space management [Bell 00] 

Goal: Place new elements to avoid overlap 
  Elements are axis-aligned rectangles 
  Keep track of largest empty space rectangles 



8 

Pros and cons 
Pros 

  Designed to run extremely quickly 
  Simple layout algorithms are easy to code 

Cons 
  Complex layouts require large rule bases with 

lots of special cases 
 

Linear Constraint 
Satisfaction  



9 

Network of layout constraints 

[from Lok and Feiner 01] 

Constraints 

Network Two possible layouts 

Constraints as linear equations 

Local propagation 
  Set any variable  
  Update other variables to maintain constraints 

One-way 
  Each constraint has 1 output variable 
  Update output when any input changes 

Multi-way 
  Each constraint can be written so that any variable is output 
  More complicated to maintain  



10 

One-way constraints 

One-way constraints form a directed acyclic graph (DAG).  Given the 
value for any variable we propagate it’s value locally through the graph 
updating the other variable. 

Page layout example [Weitzman and Wittenburg 94] 



11 

Adaptive document layout [Jacobs 03] 

Users authors templates which use one-way constraints to adapt to 
changes in page size 

ADL template authoring [Jacobs 03] 



12 

Pros and cons 
Pros 

  Often run fast (at least one-way constraints) 
  Constraint solving systems are available online 
  Can be easier to specify relative layout 

constraints than to code direct layout algorithm  

Cons 
  Easy to over-constrain the problem 
  Constraint solving systems can only solve 

some types of layout problems 
  Difficult to encode desired layout in terms of 

mathematical constraints  
 



13 

Optimization 

Demo 



14 

Layout as optimization 
Scene description 

  Geometry: polygons, bounding boxes, lines, points, etc. 

  Layout parameters: position, orientation, scale, color, etc. 
 

Large design space of possible layouts 
 

To use optimization we will specify … 
  Initialize/Perturb functions: Form a layout  
  Penalty function: Evaluate quality of layout  

  .. and find layout that minimizes penalty 

Optimization algorithms 
There are lots of them: 

 line search, Newton’s method, A*, tabu, gradient 
descent, conjugate gradient, linear programming, 
quadratic programming, simulated annealing, … 

 
Differences 

  Speed 
  Memory  
  Properties of the solution 
  Requirements 

 
 



15 

Simulated annealing 
currL ß Initialize() 
while(! termination condition) 
  newL ß Perturb(currL) 
  currE ß Penalty(currL) 
  newE ß Penalty(newL) 
  if((newE < currE) or  
    (rand[0,1) < e-ΔE/T)) 
    then currL ß newL 
  Decrease(T) 
 
 

Perturb: Efficiently cover layout design space 
Penalty: Describes desirable/undesirable layout features 

Form initial layout 

Perturb to form new layout 

Evaluate quality of layouts 

Always accept lower penalty 
Small probability of accepting 

higher penalty 

Scene description 
Geometry 
  Pie slices  
       anchors for labels 

  Labels  
      bounding boxes 
 
 



16 

  Position (x, y) 
  Leader line 
  Word wrap 
  Color 
  Alignment 
  Orientation 
  Scale 
 
 
 

Layout parameters 



17 



18 

  Position (x, y) 
  Leader line 
  Word wrap 
  Color 
  Alignment 
 Orientation 
  Scale 
 
2D x 50 labels à  
     100D space 
 

Many dimensions à large space 



19 

Penalties 
Overlap & Distance 
  Label – anchor slice 
  Label – other slices 
  Label – label 

 
Leader lines 
  Length 
  Intersections 

 
Word Wrap 
 
Annealing 
minimizes sum of 
all penalties 

Overlap: Label – Anchor Slice 

Avoid partial overlap: No penalty if fully inside /outside 



20 

Overlap: Label – Anchor Slice 

Penalize partial overlap by overlap amount 

Distance: Label – Anchor Slice 

Ensure label near center of edge of anchor slice 



21 

Distance: Label – Anchor Slice 

Minimize distance d 

d 

Penalties 
Overlap & Distance 
  Label – anchor slice 
  Label – other slices 
  Label – label 

 
Leader lines 
  Length 
  Intersections 

 
Word Wrap 
 
Annealing 
minimizes sum of 
all penalties 



22 

Demo 

Pros and cons 
Pros 

  Much more flexible than linear constraint 
solving systems  

Cons 
  Can be relatively slow to converge 
  Need to set penalty function parameters 

(weights) 
  Difficult to encode desired layout in terms of 

mathematical penalty functions  
 



23 

Design principles 
Sometimes specified in design books 

  Tufte, Few, photography manuals, cartography books … 
  Often specified at a high level 
  Challenge is to transform principles into constraints or penalties 

Cartographer Eduard Imhof’s labeling heurists transformed into penalty  
functions for an optimization based point labeling system [Edmondson 97] 

Example-Based Methods 



24 

Preference elicitation  [Gajos and Weld 05] 
Learn characteristics of good designs 

  Generate designs based on a parameterized design space 
  Ask designers if they are good or bad 
  Learn good parameters values based on responses 

Nonlinear Inverse Opt.  [Vollick et al. 07] 
Learn label layout style from single example 

Horizontal/Vertical 



25 

Nonlinear Inverse Opt.  [Vollick et al. 07] 
Learn label layout style from single example 

Parallel Leader Lines 

Artistic Resizing 
 
 
 
 

A Technique for Rich 
Scale-Sensitive Vector Graphics 

Pierre Dragicevic 

Stéphane Chatty 

David Thevenin 

Jean-Luc Vinot 
Direction 

Générale de 
l’Aviation 

Civile 



26 

The Resizing Problem 

n  Fixed 
size 

n  Naive 
scaling 

n  Artistic 
resizing 

Expressing Artistic Resizing 
 

n  Commonly described using formulae 

n  These formulae are: 
n  Translated into code by the programmer 
n  Or used as an input to constraint-solving systems 

w 

h 

wL 

hL 

yL 

xL 
r 

hB 

wB 

• xL = (w-wL) / 2 
• yL = (h-hL) / 2 
• wL = 20 
•  hL = 10 

• wB = 5 
•  hB = 5 

• r = 20 



27 

Example-Based Approach 

 
1.   Designers produce variants 

 using their authoring tool 

 
2.   System interprets 

 the example set 

Artistic Resizing 
 How does it work? 

 

n  Assumes the exclusive use of: 
n  Copy & paste for adding new examples 
n  Affine transformation tools (move, scale, rotate, shear) 

n  Based on local interpolation of transformations 

T1 T1’ 



28 

Artistic Resizing 
 How does it work? 

 

n  Each variant of T1 is associated with 
the example’s bounding box 

T1 
T1’ 

? 

T1’’ T1’’’ 

Artistic Resizing 
 How does it work? 

 

n  Problem of multivariate interpolation 

width 

height 
T1’ 

T1’’’ 

T1’’ 

transf. 

T1 

? 



29 

Pros and cons 
Pros 

  Often much easier to specify desired layout via 
examples 

Cons 
  Usually requires underlying model 
  Model will constrain types of layouts possible 
  Large design spaces likely to require lots of 

examples to learn parameters well 
 

Identifying Design Principles 



30 

Good Design Improves Effectiveness 

London Underground [Beck 33] Geographic version of map 

Good Design Improves Effectiveness 

London Underground [Beck 33] Geographic version of map 

Design principle:  
  Straighten lines to emphasize sequence of stops 

Technique used to emphasize/de-emphasize information 



31 

Approach 
Identify design principles 

 Cognition and perception 
 

 
Instantiate design principles 

 Principles become constraints that 
guide an optimization process 

 
Route maps 

Assembly instructions 

Route Maps 



32 

Visualizing Routes 

A Better Visualization 



33 

Cognition of Route Maps 
Essential information 

  Turning points 
  Route topology 

 
Secondary context information 

  Local landmarks, cross streets, etc. 
  Overview area landmarks, global 

shape 
 
Exact geometry less important 

  Not apprehended accurately 
  Not drawn accurately 

 
[Tversky 81] [Tufte 90] [Tversky 92]  

[MacEachren 95] [Denis 97] [Tversky 99]   

Design Principles 

  Exaggerate road length 
  Regularize turning angles 
  Simplify road shape 
 



34 

LineDrive 

Hand-drawn route map LineDrive route map 

Map Design via Optimization  
Set of graphic elements 

 Roads, labels, cross-streets, … 
 

Choose visual attributes 
 Position, orientation, size, … 
 Distortions increase flexibility 

 

Develop constraints based on  
design principles 

 

Simulated annealing 
 Perturb:  Form a layout   
 Score:    Evaluate quality    
 Minimize score 

 



35 

Request for Directions 

Shape Simplification 

Road Layout 

Label Layout 

Context Layout 

Decoration 

LineDrive 

Route Finding Service 

Route Data 

 Route Map 


