Identifying Design Principles II

Maneesh Agrawala Jessica Hullman

CS 294-10: Visualization Fall 2014

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- **8**-12 page paper in format of conference paper submission
- 1 or 2 design discussion presentations

Schedule

- Project proposal: 10/27
- Project presentation: 11/10, 11/12
- Final paper and presentation: TBD, likely 12/1-12/5

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Map Design via Optimization

Set of graphic elements

Roads, labels, cross-streets, ...

Choose visual attributes

- Position, orientation, size, ...
- Distortions increase flexibility

Develop constraints based on design principles

Simulated annealing

- Perturb: Form a layout
- Score: Evaluate quality
- Minimize score

Road Layout Constraints

Length

Ensure all roads visible Maintain ordering by length

Orientation

Maintain original orientation

Topological errors Prevent false

Prevent missing Ensure separation

Overall route shape Maintain endpoint direction Maintain endpoint distance

 $((L_{min} - I(r_i)) / L_{min})^2 * W_{small}$ $W_{shuffle}$

 $|\alpha_{curr}(r_i) - \alpha_{orig}(r_i)| * W_{orient}$

$$\begin{split} \min(d_{\text{origin}} \text{, } d_{\text{dest}}) * \text{W}_{\text{false}} \\ & \text{d} * \text{W}_{\text{missing}} \\ & \min(d_{\text{ext}}, \text{E}) * \text{W}_{\text{ext}} \end{split}$$

$$\begin{split} & |\alpha_{\text{curr}}(\textbf{v}) - \alpha_{\text{orig}}(\textbf{v})| * W_{\text{enddir}} \\ & |\textbf{d}_{\text{curr}}(\textbf{v}) - \textbf{d}_{\text{orig}}(\textbf{v})| * W_{\text{enddist}} \end{split}$$

Balancing the Constraints

Prioritize scores by importance

- 1. Prevent topological errors
- 2. Ensure all roads visible
- 3. Maintain original orientation
- 4. Maintain ordering by length
- 5. Maintain overall route shape

Priorities set based on usability tests

- Users given maps containing errors
- Rated which errors most confusing

System Performance

7727 routes (sampled over 1 day at MapBlast!)	
Median distance	52.5 miles
Median number turning points	13
Median computation time	0.7 sec
Short roads	5.4 %
False intersections	0.3 %
Missing intersections	0.2 %
Label-label overlap	0.5 %
Label-road overlap	11.7 %

Previous Work

Planning

- Choose sequence of assembly operations
- Robotics / AI / Mechanical Engineering [Wolter 89], [de Mello 91], [Wilson 92], [Romney 95]

Presentation

- Visually convey assembly operations
- Visualization / Computer Graphics [Seligmann 91], [Rist 94], [Butz 97], [Strothotte 98]

Jointly optimize plan and presentation

Identifying Design Principles

Stage 1: Production

min (Vis(r, R-r)) * W _R r∈ _R
Vis(A, R) * W _A
min (Vis(u,R)) * W _U u∈∪

Summary

Identification of design principles

- Production
- Preference
- Comprehension

Instantiation of design principles

Validation of design principles

