



# Phases of the Tides





Figure 1.9. Cotidal chart. Tide phases relative to Greenwich are plotted for all the world's oceans. Phase progresses from red to orange to yellow to green to blue to purple. The lines converge on anphidromic points, singularities on the earth's surface where there is no defined tide. [Winfree, 1987 #1195, p. 17].



















|      |        |                           | st powerful brain? |                    |          |   |  |  |  |  |
|------|--------|---------------------------|--------------------|--------------------|----------|---|--|--|--|--|
|      |        |                           |                    |                    |          |   |  |  |  |  |
| 1993 | licros | oft Excel - animal.xls    |                    |                    | <u> </u> | 1 |  |  |  |  |
| ; C1 | Ele    | Edit View Insert Format   | Tools Data W       | indow <u>H</u> elp | _ 8 ×    |   |  |  |  |  |
|      | A1     | - ∱ ID                    |                    |                    |          |   |  |  |  |  |
|      | A      | В                         | C                  | D                  | E        |   |  |  |  |  |
| 1    | ID     | Name                      | Body Weight        | Brain Weight       |          |   |  |  |  |  |
| 2    | 1      | Lesser Short-tailed Shrew | 5                  | 0.14               |          |   |  |  |  |  |
| 3    | 2      | Little Brown Bat          | 10                 | 0.25               |          |   |  |  |  |  |
| 4    | 3      | Mouse                     | 23                 | 0.3                |          |   |  |  |  |  |
| 5    | 4      | Big Brown Bat             | 23                 | 0.4                |          |   |  |  |  |  |
| 6    | 5      | Musk Shrew                | 48                 | 0.33               |          |   |  |  |  |  |
| 7    | 6      | Star Nosed Mole           | 60                 | 1                  |          |   |  |  |  |  |
| 8    | 7      | Eastern American Mole     | 75                 | 1.2                |          |   |  |  |  |  |
| 9    | 8      | Ground Squirrel           | 101                | 4                  |          |   |  |  |  |  |
| 10   | 9      | Tree Shrew                | 104                | 2.5                |          |   |  |  |  |  |
| 11   | 10     | Golden Hamster            | 120                | 1                  | _        |   |  |  |  |  |
| 12   | 11     | Mole Rate                 | 122                | 3                  |          |   |  |  |  |  |
| 13   | 12     | Galago                    | 200                | 5                  |          |   |  |  |  |  |
| 14   | 13     | Rat                       | 280                | 1.9                |          |   |  |  |  |  |
| 15   | 14     | Chinchilla                | 425                | 6.4                |          |   |  |  |  |  |
| 16   | 15     | Desert Hedgehog           | 550                | 2.4                |          |   |  |  |  |  |
| 17   | 16     | Rock Hyrax (a)            | 750                | 12.3               |          |   |  |  |  |  |
| 18   | 17     | European Hedgehog         | 785                | 3.5                |          |   |  |  |  |  |
| 19   | 18     | Tenrec                    | 900                | 2.6                |          |   |  |  |  |  |
| 20   | 19     | Arctic Ground Squirrel    | 920                | 5.7                |          |   |  |  |  |  |
| 21   | 20     | African Giant Pouched Rat | 1000               | 6.6                |          |   |  |  |  |  |
| 22   | 21     | Guinea Pig                | 1040               | 5.5                |          |   |  |  |  |  |
| 23   | 22     | Mountain Beaver           | 1350               | 8.1                |          |   |  |  |  |  |
| 24   | 23     | Slow Loris                | 1400               | 12.5               |          |   |  |  |  |  |
| 25   | 24     | Genet                     | 1410               | 17.5               |          |   |  |  |  |  |
| 26   | 25     | Phalanger                 | 1620               | 11.4               | -        |   |  |  |  |  |
| H I  |        | animal                    | 1                  |                    |          |   |  |  |  |  |

































# Semantic zooming

# Change visual representations as zoom level changes





















distortion, bottom row from distortion to context.































# Summary

- Spatial layout is the most important visual encoding
- Geometric properties of spatial transforms support geometric reasoning
- Show data with as much resolution as possible
- Use distortions to emphasize important information

# Announcements

# **Final project**

#### Design new visualization method

Pose problem, Implement creative solution

#### Deliverables

- Implementation of solution
- **8**-12 page paper in format of conference paper submission
- 1 or 2 design discussion presentations

#### Schedule

- Project proposal: 10/27
- Project presentation: 11/10, 11/12
- Final paper and presentation: TBD, likely 12/1-12/5

#### Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member



# <section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row>

# Approaches

Direct rule-based methods Constraint satisfaction Optimization Example-based methods









# Dynamic space management [Bell 00] Manage free space on desktop to prevent window overlap

# Dynamic space management [Bell 00]

#### Goal: Place new elements to avoid overlap

- Elements are axis-aligned rectangles
- Keep track of largest empty space rectangles





#### Pros

- Designed to run extremely quickly
- Simple layout algorithms are easy to code

#### Cons

Complex layouts require large rule bases with lots of special cases







More complicated to maintain









# Adaptive Grid~Based Document Layout Chuck Jacobs<sup>1</sup> wilmot Li<sup>2</sup> evan schrier<sup>2</sup> David Bargeron<sup>1</sup> david salesin<sup>1,2</sup>

#### Pros

- Often run fast (at least one-way constraints)
- Constraint solving systems are available online
- Can be easier to specify relative layout constraints than to code direct layout algorithm

#### Cons

- Easy to over-constrain the problem
- Constraint solving systems can only solve some types of layout problems
- Difficult to encode desired layout in terms of mathematical constraints





# Layout as optimization

#### **Scene description**

- **Geometry:** polygons, bounding boxes, lines, points, etc.
- **Layout parameters:** position, orientation, scale, color, etc.

Large design space of possible layouts

#### To use optimization we will specify ...

- **Initialize/Perturb functions:** Form a layout
- **Penalty function:** Evaluate quality of layout
- .. and find layout that minimizes penalty

# **Optimization algorithms**

#### There are lots of them:

line search, Newton's method, A\*, tabu, gradient descent, conjugate gradient, linear programming, quadratic programming, simulated annealing, ...

#### Differences

- Speed
- Memory
- Properties of the solution
- Requirements

### Simulated annealing



**Penalty:** Describes desirable/undesirable layout features





























#### Pros

Much more flexible than linear constraint solving systems

#### Cons

- Can be relatively slow to converge
- Need to set penalty function parameters (weights)
- Difficult to encode desired layout in terms of mathematical penalty functions

# **Design principles**

#### Sometimes specified in design books

- Tufte, Few, photography manuals, cartography books ...
- Often specified at a high level
- Challenge is to transform principles into constraints or penalties

|                    |       |             | Kolik     Andre Stationen, Sie Different     Kolik     Andre Stationen, Sie Different     Kolik     K      |
|--------------------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.400              | 0.000 | x0.470      | Windowski w State  |
| 0.575              | 0.150 |             | Terrender Versionen 198 All State St |
| <b>⊙</b> Gump_City | 0.800 | 0.825 0.875 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |       |             | The second contract of the second contract oo the second contract oothere of the second con |

Cartographer Eduard Imhof's labeling heurists transformed into penalty functions for an optimization based point labeling system [Edmondson 97]



# Preference elicitation [Gajos and Weld 05]

#### Learn characteristics of good designs

- Generate designs based on a parameterized design space
- Ask designers if they are good or bad
- Learn good parameters values based on responses





















#### Pros

Often much easier to specify desired layout via examples

#### Cons

- Usually requires underlying model
- Model will constrain types of layouts possible
- Large design spaces likely to require lots of examples to learn parameters well