
Improving Visual Cues for the Interactive Learning of
Bayesian Networks

Lisa Li
UC Berkeley

lisa.qy.li@berkeley.edu

Omar Ramadan
UC Berkeley

omar.ramadan@berkeley.edu

Phoebe Schmidt
UC Berkeley

pbschmidt@berkeley.edu

INTRODUCTION
A Bayesian network is a visual representation of a set of
variables and relationships that govern their conditional in-
dependence. Bayes nets (BNs) have been useful in solving
many data analysis problems because they encode dependen-
cies and causal relationships between variables without over-
fitting [5]. Learning the optimal structure of a Bayesian net-
work, however, is an intractable problem [7]. There are two
very different approaches for structure learning from heuris-
tics. The constraint-based approach starts with a fully con-
nected graph and iteratively removes edges if conditional in-
dependencies are measured in the data [8]. The more popular
score-and-search approach on the other hand starts with an
empty graph and searches the space of graphs for the highest
scoring graph [8]. Such automated optimization-based ap-
proaches are prone to overfitting especially when the system
is only partially observed. Structure learning is most effec-
tive when domain specific insights are leveraged. Interac-
tive structure learning is where a domain expert uses heuris-
tics from learning algorithms to guide the design process [3].
Some software programs implementing this type of learning
have been developed, but are limited in their interactivity and
the heuristics that they visualize.

We seek to improve existing visual tools that aid experts in
learning an optimal Bayes net structure with information vi-
sualization techniques that will encode more dimensions of
data with cleaner and more informative interaction. Specif-
ically we augmented the score-and-search structure learning
capability of an existing utility, OpenMarkov. We developed
four interactions that we believe are integral to an interactive
learning workflow: (i) Evaluation View: a visual analysis of
how well the structure conforms to the learning data and an
overview of proposed edits to the network (ii) Edit View: a
visual exploration of positive edits to the network from a par-
ticular variable (iii) a Look-ahead graph: a preview of the ed-
its applied by the learning algorithm after a number of steps
for a back and forth interchange between the user and the
automatic method (iv) Objective Function View: support for
visualizing how the objective function changes with edits and
tracking overfitting on a held-out dataset. In this paper we
will first briefly review Bayes nets and conditional probabil-
ity, discuss prior relevant work and the scope of OpenMarkov
as it relates to BN structure learning, and present our visual
tool and conclusions.

Copyright the authors

CONDITIONAL PROBABILITY AND BAYESIAN NET-
WORKS
Conditional independence is our most basic and robust form
of knowledge about uncertain environments [1]. To provide a
definition, A is conditionally independent of B given C if and
only if knowledge of B does not affect the probability of A
given C.

A ⊥⊥ B | C ⇐⇒ P (A |B,C) = P (A | C)

A Bayes net visually encodes a set of variables and their con-
ditional dependencies with a directed acyclic graph (DAG) of
nodes and edges together with a conditional probability table
for each node and its parents [1]. A BN implicitly encodes
a joint distribution as a product of local conditional distribu-
tions; by performing the Chain Rule, or multiplying relevant
conditionals together, an expert can determine the probabil-
ity of a certain assignment of variables in the BN [1]. Bayes
nets have proven useful in data analysis since the eighties,
because they represent causal relationships and combine do-
main knowledge with data with decent protection from over-
fitting [5]. For instance, an employee at a sales company must
decide whether they should increase exposure of a certain ad-
vertisement to increase sales. They could refer to a Bayes net
to determine whether ad exposure causes increased sales, and
by how much. Alternatively, an expert in the field of medicine
is faced with a set of data about patients. The data includes
various pieces of information about each patient, including
recent travel history, family medical history, and symptoms.
A complete Bayes net representing these variables and their
relationships could be useful in diagnosis and studying trends
for future patients. Bayes net representations are useful; the
problem lies in constructing a complete Bayes net: an NP-
hard problem. In the following section we will discuss exist-
ing research that aims to find Bayes net structures that best
represent the joint distribution of a given set of data points.

RELATED WORK
There are two modes of learning in Bayesian networks: pa-
rameter learning and structure learning [3]. Parameter learn-
ing focuses on finding the probability distributions of a set of
data while structure learning focuses on finding the the topol-
ogy of the variables within the network. We focus our work
solely on the latter, structure learning, and the improvements
that can be brought to the process through more effective vi-
sualization and interactions.

1

The problem of finding the optimal BN structure for a set
of related variables can represented as a state space search
with the goal being to find the structure that best expresses
the dataset. Unfortunately the number of DAGs as a function
of the number of variables, G(n), grows at a super-exponential
rate and is given by the following recurrence [8]:

G(n) =

n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k)G(n− k)

An exhaustive search of the space is therefore infeasible.

Automatic structure learning
In practice we can use a variety of approximation algorithms.
Constraint based approaches such as the IC algorithm [9] and
the PC algorithm [10] begin with a fully connected graph
and compute the conditional independencies between differ-
ent sets of variables from the data to eliminate edges from the
network. The problem with this approach is that the repeated
independence tests lose statistical power.

Score and search methods on the other hand start with an
empty graph and navigate the search space by adding edges
and scoring the network to find a network that yields the max-
imal score. We can perform a local search such as greedy
hill climbing or a global search such as Markov Chain Monte
Carlo.

Furthermore, we can introduce restarts where we randomly
perturb the network and restart the search to avoid local op-
tima. Popular classes of scoring functions include the BDeu,
the popular K2 score and the BIC (Bayesian Information Cri-
terion) [8, 11, 12].

Interactive structure learning
Noisy data measurements coupled with the limitations of ap-
proximation models frequently yield models that are subop-
timal. In most cases, experts will manually edit the output
models from these algorithms. Existing tools for automatic
structure learning with these algorithms are largely script
based and dont provide functionality for users to interact with
the generated graphs [8, 13, 14].

Typically, a user will generate learn the graph structure from
the data and use a graph visualization tool such as GraphViz
to evaluate the learned network, after which a domain expert
will analyze the relationships to investigate their validity. The
user can evaluate individual links and their conditional depen-
dence using measures such as link and connection strength.
The Link Strength package for BNT allows users to visualize
such metrics using the edge thickness [15]. After analyzing
and modifying the structure, the user may then pass the net-
work through the learning algorithm again to identify addi-
tional edits.

OpenMarkov: Incorporating User Interaction
OpenMarkov, a project from the Research Centre for Intel-
ligent Decision-Support Systems of the UNED in Madrid,
Spain, is a comprehensive toolkit for probabilistic graphical

models (PGMs), including but not limited to Bayesian net-
works [2]. It includes a module for interactive Bayes net
structure learning that allows users to learn a network from a
dataset using both PC and score-and-search algorithms with
a variety of scoring metrics [2]. It includes automatic learn-
ing, which completes the BN structure with the selected al-
gorithm and metric, or interactive learning, which allows the
user to make manual edits or select edits from a list of sug-
gestions [2]. All edits are undoable [2].OpenMarkov is the
most advanced existing software tools we could found that
is open to public. It comes with diverse capabilities and its
interface is simple and clear. However, OpenMarkov does
not dynamically visualize the performance of each actions
user performed; for the remainder of this paper we will use
the name OpenMarkov to refer specifically to the Bayes Net
learning tool.

METHODS
We believe interactive structure learning of Bayes nets could
be greatly improved with better visualization and user inter-
action. Given the time constraints of this project, we sought to
leverage the advanced metrics and computations already im-
plemented in OpenMarkov and augmented the graphical user
interface to test whether these features can improve user ex-
perience. We added four main features: (i) Evaluation View,
(ii) Edit View, (iii) a Look-ahead graph, and (iv) an Objective
Function View. Users experience no conscious literal switch-
ing between various views as they are titled above; rather
we conceptualize the features as different views because each
one has unique features designed specifically to aid in differ-
ent points of the network construction process.

Evaluation View
Evaluation view is the name for the default view of Open-
Markov plus our additional graphical tools. Before our
changes, OpenMarkov presents the user with a circle of
nodes, one for each variable. Depending on the learning algo-
rithm selected, there are either zero edges present at the start
(hill climbing), or all possible edges present (k-learning). All
nodes are colored yellow and labeled with their names, and
all edges are of equal thickness. Users can manually draw
and remove edges or apply edits from a table of suggestions
generated from a user-selected algorithm (x, y, or z). Every
action is undo-able. Besides the animation of manually draw-
ing an edge, the graph remains static.

Description
Our Evaluation View differs from OpenMarkovs default de-
sign in two main ways: the edge display and the node display.

In Evaluation View edge thickness scales with a value called
relative link strength, which allows us to evaluate the rela-
tionships between variables.

Ebert-Uphof defines a similar quantity, link strength, as a
measure of information gain defined by entropy [6]. The link
strength of a directed edge from X to Y measures the infor-
mation gain about the random variable Y given the value of
X, conditioned on the parents Z of Y excluding X [6]. That
is:

LS(X → Y) = H(Y |Z)−H(Y |X,Z)

2

Unlike in [3], we choose to normalize this metric to ensure
equivalent comparsions in the visualization. The link strength
percentage in [6] regularizes the value by the initial entropy,
i.e)

LS%(X → Y) =
H(Y |Z)−H(Y |X,Z)

H(Y |Z)

This metric effectively tells us how much more we can learn
about a variable given its parent. However, it can be mis-
leading to use this metric for edge thickness because the nor-
malization doesn’t allow for visual comparison. Instead we
define the normalized link strength to be normalized over the
mutal information of all edges:

LSnorm(X → Y) =
LS(X → Y)∑

(A,B)∈E LS(A→ B)

This quantity is recalculated with every edit to the graph,
and the thickness dynamically changes appropriately. That
is, when a user manually draws an edge or adds one from the
edit table the dependence of the new edge and every other ex-
isting edge is recalculated, and each edge is repainted with a
thickness corresponding to the new value [Figure 1].

Nodes appear slightly altered in Evaluation View, as well.
Nodes are still yellow and arranged in a circle by default, but
we vary the alpha channel. For each node we consider every
possible edit from that node: all edge additions, removals,
or inversions. We then calculate the motivation for each of
these possible edits. Motivation is a measure of the change
in heuristic score for the whole network. At the start of the
interactive learning process in OpenMarkov, the user speci-
fies which metric or heuristic to use to evaluate the total net-
work. Motivation of a particular edit is the amount the total
heuristic score will change when that edit is applied to the
network. The edit with the highest motivation is the best edit
a user can make from that specific node. The transparency of
the node directly corresponds to this maximum motivation;
higher motivation values yield higher opacity and lower mo-
tivation leads to more transparency. We further added a label
that redundantly encodes the value of the maximum motiva-
tion and the total number of possible edits from that node
[Figure 2]. Since this is a relative measure, once there are
no more possible edits all nodes return to the original yellow
color.

In conclusion, we visually encode two additional dimensions:
the strength of each link, or the relative link strength, and the
heuristic of the best potential edit from each node.

Purpose
Evaluation View has two main goals. First, the dynamically
changing edge thickness immediately provides the user with
a notion of how well the current Bayesian network is per-
forming. Secondly, the varied node transparency and labels
inspires user action. The opaque nodes and the nodes with
many potential edits will draw the user to click on them,
switching them into the Edit View for further exploration and
editing. The Edit View is described in detail in the following
section.

Figure 1. Edge thickness represents the relative link strength of each
link, a measure of the correlation between the parent and child variables.
It scales dynamically with each edit to the network.

Figure 2. Nodes have new labels. Proposed edits is the total number of
edits from that node with a positive motivation. The value in parentheses
is the motivation of the best edit.

The Evaluation View is meant to be used consistently
throughout the construction of the network, between every
change to the graph. As it is the default view, it requires no
clicks to display, and the user can immediately evaluate each
edit. We maintain the highly useful undo-able property of
each edit, so the user may make an edit, evaluate the change,
undo the change, and attempt a different edit instead.

Design Considerations
We decided to encode link strength with edge thickness for
consistency with past implementations of interactive struc-
tural learning. Edge thickness has been used in prior works
to encode strength of links [3,6].

We considered many different visual dimensions to encode
best possible edit from each node before settling on trans-
parency, such as node size and color. These methods, how-
ever, do not necessarily galvanize action on the part of the
user. The relative areas of nodes may prompt users to click
larger ones, however area is difficult for humans to perceive,
especially with irregular shapes such as the elliptical nodes,
and if the differences between node sizes are small. We con-
sidered using multiple color maps to prompt different levels
of action, but such coloring is more suited to nominal, or cate-
gorical data where boundaries are more well defined. Varying
transparency allows us to maintain consistency with the tool’s
design and also allows displaying small differences relatively
well. To address the difficulty in comparing similar levels

3

of transparencies, we redundantly encode the max motivation
with a node label [Figure 2].

Lastly, before our augmentation, the OpenMarkov tool fo-
cuses the users attention on a table of possible edits for the
graph, creating an edge-driven construction process. We in-
stead wanted the visualization to drive user action, intention-
ally inspiring a more natural variable driven exploratory pro-
cess. The Evaluation View intrigues users to explore edit pos-
sibilities by selecting nodes. We believe this forces users to
consider the variables themselves, and its possible relation-
ships with the surrounding variables. In focusing on a single
variable at a time, it can be more effective in learning net-
works with a larger number of variables where considering all
of the combinations of edges at once could be overwhelming.
Instead, the node-centric approach can help focus the user’s
edits to a smaller subset of potential graphs, all while the eval-
uation view promotes a holistic thinking about the structure
of the Bayes net.

Edit View
Without our added GUI features, a user can edit a Bayes net in
OpenMarkov in two ways: 1) manually drawing or removing
edges using the toolboar, and 2) selecting an edit from the
proposed edits table and clicking the apply button. Manual
edits are created solely using expert knowledge. Suggested
edits in the proposed edits table are generated as a part of the
learning algorithm and are ordered by decreasing motivation;
no visual cues exist. We want to encode information visually
to guide the user in selecting edits.

Description
The user is in Edit View as soon as they select a node. All
existing edges in the network that are unrelated to the selected
node are displayed in light grey with a uniform thickness. All
potential new edges are displayed in green. Existing edges
touching the selected node are either red or blue to indicate a
removal or a reversal of the edge, depending on which yields a
higher motivation. All of the green, red, or blue edges are also
displayed with a uniform thickness. A legend is displayed
next to the network to map the colors, red, blue, and green, to
the specific type of edit, remove, invert, and add [Figure 3].

Purpose
The Edit View is meant to be used when the user seeks to
modify the topology of graph. Rather than using a list of sug-
gested edits, the visualization helps guide a user to explore
possible edits interactively by selecting and deselecting dif-
ferent nodes. The Edit View allows users to better combine
their domain knowledge with algorithmic knowledge than in
other structure learning methods. Firstly, users see indicators
of graph performance before entering the edit view allow-
ing them to make more informed changes. Furthermore, the
node-centric interaction allows experts to focus on a smaller
more manageable subset of the graph, with a maximum of |V |
relationships at any given time as opposed to |V |2. The Edit
View helps makes the interactive structure learning process
more user-driven rather than algorithm-driven.

Design Considerations

This view required us to make the most design decisions.
First, we decided existing edges in the network unrelated to
the selected node must remain on the graph to keep the user
oriented. We also chose to shrink them all from varying thick-
ness in the Evaluation View to a uniform thickness and we
change stroke color from black in normal state to gray. This
decision was mostly to reduce graph clutter because of the
many dimensions of the new potential edges we want to user
to emphasize on.

We determined color is the best attribute to display whether
each new potential edit was an add, remove, or invert. The
tradeoff of requiring a small legend is worthwhile if the colors
provide clear, recognizable distinction between the new edges
that appear in the Edit View. We provide a legend in lower
right of our editor panel, which annotates color for different
types of edit proposals.

Look-ahead Graph
Unlike previous interactive structure learning tools, we im-
plement a look-ahead preview functionality. To view a batch
of changes introduced by the learning algorithm in Open-
Markov, the user clicks the Complete Phase button to au-
tomatically complete the Bayes net construction. However,
such functionality doesn’t allow the user to keep track of what
changes are introduced into the network which can be cum-
bersome when dealing with larger networks.

Description
We created functionality that allows the user to preview the
next set of changes introduced by the structure learning al-
gorithm. Along the top toolbar we added an open input field
and three buttons. The open field can take any integer as an
input to specify the number of steps to look-ahead. The three
buttons are labeled Look Ahead, Reset, and Apply Edits [Fig-
ure 4]. If the user fills in the open field with an integer, k
greater than 0, and clicks the Look Ahead button, the soft-
ware will preview the next k positive edits that can be applied
to the network. To discrimenate these proposed changes from
edges within the network, we display them with a uniform
thickness and with a different color. The new graph, includ-
ing the grey overlaid edges, represents the network after ap-
plying the k next most optimal positive steps, according to the
algorithm [Figure 5]. In the event that there are fewer then k,
positive edits, the look-ahead will only display those changes
that would yield improvement to the objective function.

After clicking Look Ahead, the user can choose either Undo
or Apply Edits. Undo removes the newly overlaid grey edges.
Apply Edits turns the newly overlaid grey edges to black, and
the edges re-scale according to their independence, becoming
permanent edges in the network. The view then switches back
to the Evaluation view where the user can analyze the strength
of the newly added connections.

Figure 4. The Look-ahead buttons added to the OpenMarkov toolbar

Purpose

4

Figure 3. The Edit View: Here a user has selected ”TuberculosisorCancer” and the potential edits in green, blue, and red
corresponding respectively to adding, inverting, or removing the edge.

Figure 5. Look-ahead Graph: Users select a number of steps to look-
ahead, and changes appear on the graph in grey. These edges become a
permanent part of the graph and turn to black when the user selects the
”Apply Edits” button in the toolbar.

The Look-ahead graph is for users to preview the algorithms
k next proposed edits without all of the extra data provided
in the Edit View. Throughout the Bayes net construction pro-
cess the user will continually select nodes, inspect the next
potential edits, apply edits, explore how the strength of edge
changes, undo steps, and redo steps.

This is a user driven process and differs vastly from tradi-
tional structural learning approaches in which the user and
algorithm take turns applying changes to the network. The
look-ahead functionality thus allows this type of interchange
between the user and the algorithm to persist, while giving
more control over the changes introduced by the learning al-
gorithm. Nonetheless, we expect that users will utilize the
Look-ahead funcionality less frequently than the Evaluation
and Edit Modes.

The grey edges that appear after clicking Look Ahead are
meant to seem temporary, like overlays. Only when the user
selects Apply Edits, and the new edges turn black are they
truly part of the network.

This feature is meant to better integrate human interaction
with machine generated suggestions. OpenMarkov previ-
ously only displayed look-ahead steps as text entries in a ta-
ble. Users could not preview graphs without applying edits.
The look-ahead graph provides new flexibility.

Design Considerations
Our first design decision for this view was to overlay the look-
ahead graph on top of the current network. We considered a
side-by-side view of the current Bayes net and the look-ahead
graph, or a pop up window, but we wanted to avoid limiting or
occluding the available workspace. A side-by-side view cuts
a user’s workspace in half, and a large pop-up would cover

5

the current workspace and would be disconnected from the
other interactions.

We also discussed at length the use of an open input box and
three buttons. In order to maintain the feeling that the look-
ahead graph is a temporary overlay until intentionally apply-
ing the edits, it is important to maintain two separate Look
Ahead and Apply Edits buttons. We briefly considered re-
moving the Look Ahead and Undo buttons completely, and
instead utilizing only an input box and an Apply Edits but-
ton. In this scenario a user would type an integer and click
the single button; to remove the look-ahead edits, a 0 would
be entered. All these options are unfit for our GUI because
we want to emphasize that the look-ahead edges are tempo-
rary. We also considered using a slider bar instead of an input
box for user to enter look ahead steps. We finally decided on
using input box because number of steps look ahead could
vary greatly depending on number of nodes in the graph and
current graph state.

Lastly we considered keeping different edge thickness for all
existing edges. Finally, we decide on thinning all existing
edges, such that existing edges and look ahead preview edges
in the network have a uniform thickness. The main reason for
keeping a uniform thickness for all edges in look ahead graph
is we want to provide user a general overview of the network
k steps from current graph state. After testing both scenar-
ios, we find varying edge thicknesses make the graph look
cluttered and provides misleading information to draw user’s
attention to a subset of the grpah instead of the whole pic-
ture; it helps enforce the distinction between the look ahead
preview and the existing network edges, and contrary to our
hypotheses was not visually overwhelming.

Objective Function View
One of the many problems with approximate Bayesain struc-
ture learning is the overfitting of the network to the dataset.
When working with a system is not fully observed, the choice
of metric will strongly influence the resulting structure that
is learned. Current structural learning tools limit the user to
work with a single metric on which the network structure is
optimized. This can lead to overfitting of the training dataset.
The objective function view allows users to compare the met-
ric used in training with the classification rate on a held out
set to monitor overfitting.

Description
OpenMarkov allows users to load in datasets for performing
inference under File -¿ Load Evidence. We leverage this func-
tionality during training to allow users to benchmark the net-
work’s classification accuracy on a held-out set while train-
ing. After loading in this testing data, the user can select
which variable to classify over in the same window as the ta-
ble of suggested edits, by clicking on a tab at the top labeled
[Figure 6].

With each change to the network, the software performs infer-
ence on the dataset. For each piece of evidence in the dataset,
it computes the probability that the test variable matches the
entry. Only samples for which the test variables is know is the

test performed. If the probability exceeds the user specified
threshold, it considers it as a correct classification.

Each change to the network yields a different classification
rate as well as a differnt change to the network score used
by hte learning algorithm. These values are plotted in the
window. To be able to display both measurements simulata-
neously, we use mutliple axes of differnet scales and a legend
to differentiate between the two plots.

Figure 6. The Objective Function view. Users can select the test variable,
the classification threshold, and examine the results with each edit to the
network.

Purpose
This feature is meant for users to monitor the performance
of the network on a sparse test dataset. The time-series
graph shows whether the performance increases or decreases.
While the learning algorithm metric will continue to yield
positive edits, such edits may be overfittign to the dataset.
This view allows you to monitor this by using a different
dataset and a classification analysis.

Design Considerations
In designing a tool for interactive structure learning, we knew
that overfitting was an issue that we would need to address.
Our original design featured a dashboard of metrics depicting
the current score of the network. However, we felt that be-
ing able to track the changes would be useful to understand
where overfitting occured and perform the necessary undoes
to address the issue.

After building the time series chart, the original plan was to
add a dropdown that would allow the user to display which
metric to plot. However, we found it more effective to visu-
alize the metrics simultaneously with mutliple axes to allow
for easier comparison.

RESULTS
Results of our research project are based on feedback from a
limited number of human subjects. We asked a small group
of students, staff, and faculty try use our tools with Open-
Markov and give us informal oral feedback. All subjects had
a basic understanding of Bayesian networks and related con-
cepts of conditional probability. For each subject, we first
gave a review of related concepts of Bayesian networks and
then we gave a quick demo of the basic functionalities of our
software. We chose to test all subjects with a Asia10k dataset,
which contains 10 variables of common diseases and their po-
tential causes. We choose this dataset for two reasons: 1) The

6

search space of the set of graphs is adequately large enough
to justify learning. 2) Users are able to have some insights
about the network based on common knowledge. We observe
users’ interaction with our software and ask user to compare
their experiences of using the original OpenMarkov frame-
work versus the our tool.

Evaluation View
We received overwhelming positive feedback about the eval-
uation view. Users reported it is a necessary improvement
to the existing OpenMarkov framework, and that the edge
thickness is an intuitive visual encoding of edge strength.
Most other feedback regarded a misunderstanding of the true
meaning of link-strength and how to compare the different
edge thicknesses. Perhaps this should be better communi-
cated through the OpenMarkov GUI.

Edit View
Almost all of our users commented with dissatisfaction about
the colorful potential new edits. With the help of the leg-
end users easily understood the meaning of the color-coded
edges, however they expressed desire for an obvious visual
dimension displaying the motivation of each potential edit. A
few subjects suggested we re-use edge thickness. Although
edge thickness already encodes a related but different value in
the Evaluation View, the edge strength or dependence, edge
thickness here would represent motivation of a new edit, or
the relative performance improvement of the entire network.
Despite this discrepancy our user subjects believed it would
not be misleading to encode both of these values with the
same visual dimension.

Other feedback for the Edit View simply commented on the
quantity of incoming edges to each selected node, and the
lack of outgoing edges. Although this may be a bug in our
implementation, it is more likely a result of certain edits re-
sulting in negative motivation scores; that is, they would de-
crease the overall performance of the network. Future work
could include a way to display these negative edits, or making
it clear to users that negative edits do not appear in the Edit
View.

Furthermore, we could improve the edit view by allowing
users to directly click edges to apply changes rather than hav-
ing the user exit the Edit view and use the tool bar.

Look-ahead Graph
Subjects generally found the look-ahead graph intuitive and
informative. We specifically asked opinions on the text box
and three buttons, and no users reported that any of the three
buttons was superfluous. We received mixed feedback about
the edge thicknesses. Some users preferred that we keep
them varied with dependence values, our current implemen-
tation. Some users, however, reported that they would prefer
the look-ahead graph to be a cleaner preview of a finished
product, with all edges having uniform thickness.

Objective Function View

Users responded most enthusiastically to the Objective Func-
tion View. It is the most innovative and computationally ad-
vanced of our features. With some explanation subjects un-
derstood the purpose of the graph, and could easily use it to
identify the point of overfitting in the process. Most other
feedback focused on a desire to better understand the behind-
the-scenes computation.

DISCUSSION
Based on our feedback we determined that dynamic visual-
ization of metrics, or evaluation of each edge performance,
is the most important visual encoding we created for Open-
Markov. Not only was our Evaluation View well received,
it was intuitive for users and required little to no explanation.
This feature is extremely helpful during network construction
process because it provides user immediate visual feedbacks
of current and future actions based on current graph state. The
next most useful feature for this domain is providing tools
to detect overfitting. Although our Objective Function view
cannot prevent this problem, it offers consistent monitoring
and immediate detection, helping to avoid the most signifi-
cant problem with automatic computation of Bayes net struc-
tures.

More research needs to be completed to evaluate whether the
Edit View truly inspires a node-drive approach to building
Bayes nets, and whether this re-orientation of the process
helps improve users comprehensive understanding of the net-
works. More feedback is also required to determine the utility
of a preview function, such as the look-ahead graph.

FUTURE WORK
There is still much to be completed in the field of improving
visualization in interactive Bayes net software systems. There
are a number of worthwhile improvements and extensions of
our current project, as well as implications for the greater field
of probabilistic graphical models (PGMs).

Our current implementation only utilizes one construction
algorithm, hill-climbing, and a limited number of objective
functions to evaluate the performance of the network. Fu-
ture work would extend functionality to other algorithms and
heuristics. More formal user studies need to be completed to
better evaluate the UI of our tool, and compare it with Open-
Markov without our additions as well as other interactive
structure learning software. These tests should include gath-
ering feedback from subjects who routinely utilize Bayesian
networks in their field of work.

From the feedback we recieved from our user study, we note
that an area of future work includes expanding up the visual-
izations and interactions of the Edit View. Firstly, we suggest
methods to to help differentiate between the motivations of
proposed edits. We reviewed several domains in which we
could encode such information. We advise against reusing
edge thickness, because we use that dimension in the Evalua-
tion View to encode link strength; and it could be misleading
to use the same attribute to encode motivation, or difference
in performance of the network as a whole in tightly coupled
views. We also considered using transparency, however it was

7

hard to detect with the thin shape of the links. We suggest ex-
ploring text based tooltips or other visualizations to encode
the proposed edits’ motivation.

Further work on this problem could be extended to the con-
struction process of other graphical models, such as Hid-
den Markov Models. We believe the success of our Open-
Markov modifications implies that visualization and interac-
tion should play important roles in all fields that necessarily
combine expert domain knowledge and computational tools.
Quality interaction and visualization will be key to integrat-
ing these two as computers and technology are now defining
parts data analysis and problem solving.

REFERENCES
[1] D. Klein. CS 188. Class Lecture, Topic: Bayes Nets: Rep-
resentation. Department of Electrical Engineering and Com-
puter Science, Universtify of California Berkeley. Berkeley,
CA, November, 2013.

[2] CISIAD. OpenMarkov Tutorial. Internet: http://www.
openmarkov.org/docs/tutorial/tutorial.html, Sept. 2,
2013 [Nov. 1, 2041].

[3] L. E. Sucar and M. Martinez-Arroyo. Interactive Struc-
tural Learning of Bayesian Networks. Expert Systems With
Applications, vol 15, pp. 325-332, 1998.

[4] S. Acid, et al. A Comparison of learning algorithms for
Bayesian networks: a case study based on data from an emer-
gency medical service. Artificial Intelligence in Medicine,
vol. 30, pp. 215-232, 2004.

[5] D. Heckerman. A Tutorial on Learning with Bayesian
Networks. Microsoft Research Advanced Technology Divi-
sion, Microsoft Corp, Redmond, WA. Rep. MSR-TR-95-06,
Nov. 1996.

[6] I. Ebert-Uphoff. Measuring Connection Strengths and
Link Strengths in Bayesian Networks. Robotics and Intelli-
gent Machines Center, Georgia Ins. Tech., Atlanta, GA. Rep.
GT-IIC-07-01, Jan. 29, 2007.

[7] M. Koivisto and K. Sood. Exact Bayesian Structure Dis-
covery in Bayesian Networks. Journal of Machine Learning
Research, vol. 5, pp. 549-573, 2004.

[8] Murphy. How to use the Bayes Net Toolbox. Inter-
net: http://bnt.googlecode.com/svn/trunk/docs/usage.
html, Oct. 29, 2007 [Nov. 15, 2014].

[9] J. Pearl and T.S. Verma. A Theory of inferred causality.
Proceedings of the Second International Conference on the
Principles of Knowledge Representation and Reasoning, pp.
441-452, 1991.

[10] Spirtes, et al. The PC Algorithm, in Causation, Predic-
tion, and Search, Cambridge, MA: The MIT Press, 2001, ch.
5, sec. 4.2, pp. 116-124.

[11] W. Buntine, Learning classification trees, Stat Comput,
vol. 2, no. 2, pp. 6373, Jun. 1992.
[12] G. F. Cooper and E. Herskovits, A Bayesian method
for the induction of probabilistic networks from data, Mach
Learn, vol. 9, no. 4, pp. 309347, Oct. 1992.

[13] A. J. Hartemink. Banjo: Bayesian Network Infer-
ence with Java Objects. Internet: http://www.cs.duke.edu/
˜amink/software/banjo/, Nov. 2, 2010 [Dec. 5, 2014].

[14] A. Moore and W. Wong. AutonLab: Bayes Net Learner.
Internet: http://www.autonlab.org/autonweb/10530, 2010
[Dec. 5, 2014].

[15] I. Ebert-Uphoff. Linkstrength Packet for BNT. In-
ternet: http://www.dataonstage.com/BNT/PACKAGES/
LinkStrength/, Nov. 2011 [Nov. 3, 2014].

8

http://www.openmarkov.org/docs/tutorial/tutorial.html
http://www.openmarkov.org/docs/tutorial/tutorial.html
http://bnt.googlecode.com/svn/trunk/docs/usage.html
http://bnt.googlecode.com/svn/trunk/docs/usage.html
http://www.cs.duke.edu/~amink/software/banjo/
http://www.cs.duke.edu/~amink/software/banjo/
http://www.autonlab.org/autonweb/10530
http://www.dataonstage.com/BNT/PACKAGES/LinkStrength/
http://www.dataonstage.com/BNT/PACKAGES/LinkStrength/

	Introduction
	CONDITIONAL PROBABILITY AND BAYESIAN NETWORKS
	RELATED WORK
	Automatic structure learning
	Interactive structure learning
	OpenMarkov: Incorporating User Interaction

	Methods
	Evaluation View
	Description
	Purpose
	Design Considerations

	Edit View
	Description
	Purpose
	Design Considerations

	Look-ahead Graph
	Description
	Purpose
	Design Considerations

	Objective Function View
	Description
	Purpose
	Design Considerations

	Results
	Evaluation View
	Edit View
	Look-ahead Graph
	Objective Function View

	Discussion
	Future Work
	References

