deepViz: Visualizing Convolutional Neural Networks for Image Classification

Daniel Bruckner

Joshua Rosen

Evan R. Sparks

UC Berkeley
{bruckner, joshrosen, sparks} @cs.berkeley.edu

Abstract

Deep convolutional neural networks have recently shown state of
the art performance on image classification problems. However,
their inner workings remain a mystery to machine learning experts,
particularly when compared to better studied and less complex al-
gorithms such as SVM and Logistic Regression. As a result, con-
structing and debugging effective convolutional neural networks is
time-consuming and error-prone, as it often involves a substantial
amount of trial and error. We introduce deepViz, a system de-
signed to allow experts to understand their models and diagnose is-
sues with the model structure, enabling more rapid iteration during
the model construction process and faster convergence to a suitable
model for the task at hand.

1 Introduction

Deep learning, or the use of deep (i.e., many-layered) convolutional
neural networks for machine recognition and classification, is ad-
vancing the limits of performance in domains as varied as com-
puter vision, speech, and text ([Zeiler and Fergus 2013], [Dean
et al. 2012]). Improvements in both hardware and software perfor-
mance have enabled the development of larger networks that have
achieved record results ([Krizhevsky et al. 2012]). The promise of
deep learning is to automate feature engineering, a task that oth-
erwise requires application of both domain expertise and machine
learning expertise. Neural networks offer a coherent framework to
train multifaceted models that compose featurization and classifica-
tion components in a unified pipeline.

But to architect a deep network is not trivial. There are three pri-
mary challenges. First, because convolutional networks compose
many functional components—whose values as individuals and as
a whole are not well understood ([Jarrett et al. 2009])—they are
difficult to design. Second, each component of a network may have
dozens of hyper-parameters associated with it, all of which must be
tuned for peak performance. And finally, the complexity of neural
networks has protected them from the rigorous formalism of other
fields of machine learning, so practitioners can only rely on anec-
dotal results to guide design. An intimate community has focused
on convolutional networks, so few know of good design heuris-
tics. Moreover, the majority of this community is now employed
by Google and Facebook. Given these challenges, how can a rel-
ative novice to field learn to obtain results on par with the field’s
leading experts?

We propose visualization as a means to make high-end deep learn-
ing approachable. Convolutional networks are not a black box:
their internals (filters, namely) can be visualized in a natural way as
bitmaps. What is more, because neural networks are composed of
layers, intermediate representations of transformed data can be read
out after each layer. When a network is applied to image process-
ing, these intermediate forms are themselves images, and can be
visualized as such. That is, it is possible to see what the model sees
at different stages of computation. As shown by [Zeiler et al. 2011]
and [Vondrick et al. 2013] visualization of these reconstructed in-

termediate states can be an aid to model tuning and debugging.

Our system, deepViz, is an interactive visualization system for
deep learning. Given a trained convolutional model and an image
corpus, deepViz offers displays and interactions that empower a
user to explore their model and its relationship to the data.

deepViz targets an iterative workflow for development and re-
finement of convolutional networks. After a user chooses an ar-
chitecture and parameters for a network and then trains it against
some data set, they can use deepViz to observe snapshot visu-
alizations of the model at different time steps during the training
process. These snapshots give insight into the model and into prop-
erties of the training process itself (e.g., rates of convergence, and
correlated structure across time and space) that allow the user to di-
agnose shortcomings and highlight strengths of the current model.
These observations lead to revisions to the model architecture and
further rounds of training, visualization, and evaluation.

The deepViz interface provides access to several classes of vi-
sualization. Users can view bitmap representations of filter banks
in convolutional layers and of weight matrices in fully connected
layers. For all types of layers, a user may select an image from the
input data set and view the output that image induces on the layer.
These featurized representations allow a deeper understanding of
the function of particular layers and filters, and can be used to spot
sources of confusion in the model.

The system also gives users views of the model’s final output. The
first of these is an interactive confusion matrix that plots the num-
ber of images by true class and predicted class, and allows the user
to view example images in each category. Another visualization
shows the results of a clustering algorithm run on the featurized
output of the model for each image. This view is intended to high-
light subclasses of images, for example, the class of airplanes may
split into a cluster of images of planes in profile and another cluster
of images shots head on (or from above or below). Understand-
ing how the model partitions the input data (or fails to partition) is
another aid to diagnosis.

All of the visualizations in deepViz are driven by a timeline sys-
tem. As mentioned above, each display represents a snapshot of the
model at a particular point in its training. An interactive slider in-
put allows users to control which snapshot to show, or the view can
be displayed as an animation spanning the entire training process.
Animations give the user a sense of how components of the model
evolve during training. Users can stop and start animation at any
point with a button click.

The remainder of this paper is organized as follows. Section 2 dis-
cusses related work, and Section 3 gives a brief introduction to con-
volutional neural networks and how the are designed and trained.
The deepViz system architecture is described in Section 4, and
the key features, visualizations, and interactions of the system are
presented in Section 5. Section 6 describes directions for future
work and Section 7 concludes.

2 Related Work

For several decades, convolutional neural networks have been ap-
plied to problems in computer vision. In the nineties, such ar-
chitectures achieved breakthrough performance in applications like
handwriting detection and face recognition. LeNet [LeCun et al.
1998], a system for handwritten digit recognition, is among the first
to achieve near-human accuracy. LeNet notably includes an inter-
active visualization system that displays featurized versions of in-
put images as well as predictions. The visualizations allow direct
and compelling demonstration of important properties of the system
like invariance to translations and deformations of the input. While
LeNet’s visualizations provide evidence for the system’s merits—
and add to its merits, since an inspectable model is better than a
black box—they do not serve as design aids to practitioners.

Increases in computing resources have allowed deeper and more
complex convolutional to be trained. [Krizhevsky et al. 2012]
achieved record results in the ImageNet Large Scale Visual Recog-
nition Challenge [ImageNet 2013] with an eight layer network
trained on two GPUs over twelve days. For our project, we have
used open source code released by [Krizhevsky 2012] to train large
models. [Donahue et al. 2013] introduced decaf, a system written
in Python and developed here at Berkeley, to make convolutional
network processing more approachable. deepViz uses decaf
extensively for interactive image featurization and for offline statis-
tical computations.

Much recent work explores the growing design space of convolu-

Filters

Filter Info

Selected filter: None

Training Images X Clear Selection

plane

Selected Image

airplane
automobile
bird

cat

deer

dog

frog

horse
ship

truck

tional networks. [Jarrett et al. 2009] evaluate architectural vari-
ations of different hand-designed networks on several data sets.
Others, like [Yamins et al. 2013], use Bayesian methods to auto-
matically search the parameter space of convolutional networks.
deepViz intends to supplement such efforts by helping users de-
velop heuristics to guide search and evaluation in this increasingly
complex space.

Beyond neural networks, visualization has been used in computer
vision more generally as a tool to aid in feature evaluation. [Von-
drick et al. 2013] argue for the necessity of visual inspection of
image features to understand models’ failures. They use feature
inversion algorithms, whereby an image is featurized and then re-
covered to a transformed but basically intelligible format, to give
intuitive access to abstract feature representations.

Feature inversion has been applied to convolutional neural networks
to obtain several interesting results. [Le et al. 2011] perform inverse
optimization on a network trained by unsupervised learning to con-
struct the optimal inputs for particular neurons. In particular, they
find single deep neurons trained to respond to faces (both human
and feline) and bodies. This year, [Zeiler and Fergus 2013] use a
type of feature inversion called deconvolution to render re-weighted
versions of input that highlight the areas, patterns, and textures of an
image deemed most important by a particular part of the network.
These re-weighted images are both accessible and informative, and
the authors used insights from these images to refine their network
design to achieve state-of-the-art performance. In the future, we
plan to add forms of feature inversion to deepViz.

& 4545

Figure 1: The deepViz interface

3 Background

We begin by describing the structure of deep convolutional neural
networks and provide a rough overview of the design space that the
architect of such a network must consider explore when construct-
ing it. After establishing this architecture, we describe the conven-
tional training process used to converge on an appropriate model
for a particular problem. While these networks can be trained for
unsupervised learning tasks, we focus on the supervised case since
our target problem (image classification) falls into that family.

3.1 Convolutional Neural Networks

In general, an artificial neural network consists of a succession
of layers of so-called neurons. A neuron computes a function on
inputs from the preceding layer and passes the result, sometimes
called the neuron’s activation, to outputs in the succeeding layer.
Within each layer, all neurons compute the same function, but indi-
vidual neurons may have distinct sets of inputs and outputs and may
assign different weights to their inputs. Different types of layers are
defined by the number and pattern of connections between neurons.
In a fully connected layer, the neurons receive input from every out-
put in the preceding layer. In a locally connected layer, the neurons
are indexed spatially, and each only takes input from nearby out-
puts. A convolutional layer is a type of locally connected layer
where the weights that each neuron applies to its inputs are shared
in a particular way. We describe convolution in greater detail below.

A neural network architecture for image classification combines a
diversity of functions and connectivity structures using several lay-
ers. The first layers are convolutional and produce a featurized rep-
resentation of an image. Afterwards, a non-linear transformation
is often applied, followed by a linear classifier such as logistic re-
gression or SVM. The output of the network (usually a vector of
predicted probabilities) can be assessed relative to a true image la-
bel, and the result can be used by an optimization algorithm like
gradient descent to train the network. The great appeal of neural
networks is that training can be applied to the featurization layers
as well as the classifier. This end-to-end training algorithm, called
back-propagation, is the current state-of-the-art in image classifi-
cation and other domains such as speech recognition [Dean et al.
2012]. Typically, training is an iterative process that involves mul-
tiple passes of the input data until the model converges.

3.1.1 Convolution

The convolution of an image is produced by applying a filter to
image, and produces a new image. A filter is a k X k weight-
matrix where k is an odd number (so that the matrix has unique
center). Pixels in the convolved image are produced by placing the
filter on top of the image, with its center aligned at the correspond-
ing input pixel, and computing the dot product of the filter with
the pixels below it. The convolution can be imagined as the result
of moving a filter across the image that replaces each pixel with
some function of its neighborhood. This process is illustrated in
Figure 2.[Wikipedia 2013]

In the context of neural networks, a convolutional layer applies
many filters to its input to generate a feature map, which is essen-
tially a stack of convolved images, or equivalently, one convolved
image with an arbitrary number of channels per pixel. In addi-
tion, convolutional layers are often bundled with several auxiliary
layers that apply a fixed transformation to the convolved feature
map. These auxiliary layers include normalization (of pixel val-
ues within a neighborhood), pooling (aggregation of small patches
of pixels, for example, by averaging or taking the maximum pixel

output

¢
) - 4
input 0

Figure 2: Image Convolution.

value), down-sampling, and the application of various non-linear
functions to pixel values.

So far, our discussion of convolution has tended to the abstract, and
the reader would be justified to ask “what’s the point?” In fact, con-
volutions are capable of transforming images in many useful and
concrete ways, like emphasizing edges and computing gradients of
hue and value. Moreover, deep successions of convolutions have
been shown to produce image encodings that are favorable for clas-
sification, namely due to invariance to translation and deformation
[Bruna and Mallat 2012]. But exactly what is computed—and its
usefulness for classification—depends on the filters used, and there-
fore success of a convolutional network crucially depends crucially
on choosing good filters.

3.2 Design Space

Recent success in image classification has come from going deeper:
using more filters in more layers. Back-propagation automates the
training of the filter weights in these deep networks, and with larger
data sets, like ImageNet [ImageNet 2013], deeper and richer mod-
els can be trained. But the ease of training deep networks belies the
difficulty of their design.

While we have presented a basic overview of the workings of a
convolutional neural network, we have glossed over several details
of the network structure that represent design points that model’s
builder must consider.

Particular parameters that must be tuned include:

e Size of filters - Determining an appropriate size for convo-
lutional filters is not a precise science. Too small and the
features are in some sense “too coarse”, too large and model
complexity explodes with little benefit.

e Number of layers - Additional layers seems to improve model
performance, but they increase model complexity, and too
many layers may cause the signal-to-noise ratio during back-
propagation to be too low for the first few layers to be trained
into anything useful.

e Filters per layer - Again, models generally perform better
with more filters, but at what point are diminishing returns
outweighed by the increased model complexity and training
time?

e Layer connectivity - Besides convolutional layers, what other
types of layers should be used? Some top results have mixed
fully-connected and locally-connected layers with convolu-
tional ones to great effect [Krizhevsky et al. 2012].

e Initialization - Should we initialize our weights uniformly,
randomly, or to some structure? Does it make a difference?

e Auxiliary layers - The choice of pooling and normalization
function can have a significant impact on model accuracy, and
each comes bundled with several numeric parameters. How
do you tune them?

e Non-linear functions - Surprisingly, the choice of what non-
linearity to apply after a convolution can have dramatic impact
on training run-time performance. Indeed, [Krizhevsky et al.
2012] note that the use of the “relu” non-linearity instead of
the sigmoid function makes a large difference in their models’
performance.

e Optimization parameters - As with any ML model, learning
parameters like step size and regularization must be tuned to
maximize accuracy and convergence speed. Algorithms like
AdaGrad [Duchi et al. 2011] are often used to manage some
of these parameters, functional dependencies between param-
eters can make tuning difficult.

All of these parameters can have a dramatic impact on model per-
formance and complexity. By offering visual tools to explore the
effects of these design decisions, deepViz enables users to ex-
plore the design space without “shooting in the dark™ or trying all
permutations of these possible choices.

4 Architecture

Our system consists of several components that work together to
drive the interactive visual display. We make use of several exter-
nal libraries - in particular, cudaconvnet[Krizhevsky 2012] and
decaf[Donahue et al. 2013] provide the basic framework for load-
ing, training, and displaying components of convolutional neural
networks. Python’s [NumPy] and [scikit.learn] libraries provide
tools for linear algebra, multidimensional array manipulation, and
clustering. We make heavy use of [jQuery], [Bootsrap], [D3], and
[Vega] to produce interactive data displays.

4.1 Model Training and Snapshotting

Before we can visualize a model, we must train it. One of our goals
is to understand how models change over the course of their training
process, so we capture snapshots of the state of the model at several
points during training.

We train our models using cudaconvnet, a GPU-accelerated li-
brary for training CNNs. This tool provides an excellent platform
for training convolutional models with fairly general architectures.

To collect the data required for our visualizations, we instrumented
cudaconvnet to dump complete snapshots of the model to disk
several times during training.

To ensure that our visualizations show the current state of the art in
image classification networks, we trained our models according to
[Krizhevsky 2012] using the CIFAR-10 dataset.

4.2 Model Queries and Visualization Generation

Our system’s data model for convolutional neural networks consists
of four basic components: checkpoints, layers, filters, and channels.
Models have identical structure across checkpoints, although the
learned weights may vary from checkpoint to checkpoint. Each
layer has a different number of channels and filters associated with
1it.

Internally, our system allows the user to specify either a single point
in this space or a set of points (often defined by a range). If a range
is not specified, all points along a particular axis are returned by
default. This means that if a user asks for ‘checkpoint 1°, then all
layers, filters, and channels of that checkpoint are returned as a sin-
gle object. If a user selects a single layer and checkpoint, then only
a single image is returned by the back end. If several are selected,
then the result is displayed as a collection of images.

For performance, each layer is rendered as a single image. Instead
of dealing with thousands of tiny images, the browser only needs to
deal with a few large ones. In our description of the front end, we
will discuss how we enable interaction with individual components
each of these images.

Optionally, a user may ask to apply a selected subset of the model
to an input image. In this case, the query semantics are identical,
except that a user must specify which image from the image corpus
to apply the model to. Our system then (using decaf) applies the
model to the input image, and retrieves the output activations of the
image at each selected layer.

4.2.1 Image Corpus

We provide the user the ability to specify an image corpus that
can be used to provide visual examples of model behavior, as
above. This corpus is also used to calculate model statistics and to
drive image-specific visualizations, like the Confusion Matrix. We
have implemented a corpus layer that interacts with the CIFAR-10
dataset, but this architecture is extensible and it will be easy to add
support for additional image corpora.

4.2.2 Rendering Visualizations

Regardless of the mode the user chooses, our system uses decaf
to render visualizations. Internally, decaf takes the convolu-
tional layers, normalizes them, and then visualizes them on a grid
- typically displaying filters in rows with each channel shown in
a separate column. This is an instance of visualizing small multi-
ples [Tufte 1991], with position encoding pieces of the model struc-
ture.

One consideration that we have not incorporated yet is decaf’s
filter image normalization strategy. While their normalization strat-
egy is appropriate when displaying a single layer, it may cause some
information loss when displaying layers over time. That is, we
would rather see the layers globally normalized across all model
checkpoints, as it would more accurately show model transitions
over time. We leave this as future work.

We make use of decaf’s graph representation of the network to
draw a graph that displays the structure of the network and the con-
nectivity between its layers.

4.3 Statistics Engine

Several of our visualizations require model statistics that must be
computed on the full training set. The models and corpora are quite
large, so computing it’s unrealistic to compute these in an online
manner. Instead, we provide an engine to compute statistics in
batches and save them to a database. This database is queried via
the same web service that powers our filter visualizations.

Currently, the statistics engine calculates the following statistics
over the corpus at each time step: the set of class probabilities
by image, a confusion matrix indicating counts of predicted/ac-
tual class for all class pairs over all images, an index of images
by the combination of their predicted/actual classes, and a set of

Filter Info

Selected filter: None 1

Training Images 2 X Clear Selection

plane

AE

Figure 3: deepViz main interface. 1) Filter details. 2) Image
selector. 6) Selection helper. 7) Animation slider.

clusters and the k-nearest neighbors of those clusters that are calcu-
lated from the last fully connected output layer of the image. Each
of these statistics is used to drive one of the views described later.

To calculate these statistics, we use the numpy library and
scikit.learn’s KMeans clustering function. The statistics for
each checkpoint can be computed independently, so this process
could be accelerated by using a parallel or distributed computing
engine like Hadoop or Spark.

4.4 Web Application Back End

We provide access to the model query interface, visualization gen-
eration, and statistics engine via a RESTful interface which is
backed by a Flask application.

Front end clients have the ability to request model state, as well as
applications of model states to individual images, via custom URLs.
Generally, the server’s response is either a PNG image or a JSON
object (if multiple images are requested). The client is responsible
for handling and displaying these objects and enabling interaction.
The server makes heavy use of caching to reduce latency when the
same object is requested multiple times. We typically run the appli-
cation in local mode, but do not see an issue with running it over the
internet, and are considering adding the ability for users to upload
their own models and image corpora.

selector. 3) Network overview. 4) Filter visualization. 5) Visualization

4.5 Web Front End

Our web-based front end is composed of a collection of common
web technologies: namely Javascript, HTML, CSS, jQuery, and
Bootstrap. We also make use of d3 and Vega for certain visual
components.

We made efforts to keep the web front-end very lightweight, but
had to perform several optimizations in order to meet our design
goals. When brushing across time steps, we needed to avoid flick-
ering animation, since brief flashes of the page’s background could
contribute to change blindness and make it difficult for users to spot
subtle differences in the figures.[Healey 2007] To achieve smooth,
flicker-free animation, images are pre-fetched by the browser and
positioned off-screen until they have loaded completely. With this
approach, updating the canvas is seamless and doesn’t require a
round-trip to the web service.

5 Visualization Components

We present four main visualizations designed to help model
builders understand their convolutional neural networks. While
users may elect to use any of these visualizations, our primary dis-
play is a time-lapse view of model development for a particular
filter. Within this view, the user can see how individual layers act
on an input image by searching training corpus and choosing an im-

age, which applies the model to that input image and displaying the
image’s activations at the selected filter layer.

All of our visualizations focus on helping users understand how
the model changes over the course of training. That is, each view
provides some notion of viewing and comparing models across
time steps. We feel that this is an important and differentiating
characteristic of our work which may enable new insights into the
model training process. The additional visualizations serve as sup-
porting information to help the user assess hypotheses about the
cause of certain types of errors and understand the interaction be-
tween classes. Several of these visualization components are gen-
eral enough to be used with other types of image classification sys-
tems. For example - the confusion matrix with small multiples of
images would be a useful feature to have in any pipeline that in-
volves multinomial classification.

All visualizations are displayed using a 3-layer model trained on the
CIFAR-10[Krizhevsky et al.] dataset based on [Krizhevsky 2012].
The images displayed come from this training set.

5.1 Filters

Our system’s main user interface is shown in Figure 3. At the bot-
tom of the window is timeline control that supports pause, play,
rewind, and sliding interactions. All of our views update in re-
sponse to the current timeline value. These animated views allow
users to see how the model evolves over time—in particular, es-
pecially at the early layers, we can easily observe how structure
emerges. Indeed, the filter layers at this early stage end up look-
ing much like Gabor filters [Movellan], which have used for years
as featurizers for image classification algorithms. They can be in-
terpreted as scale- and rotational-invariant edge detectors, an effect
that we can see in Figure 1. It is important to note that the model
converges on these filters automatically as part of the training pro-
cess.

The top of the page displays a graphical representation of the neural
network’s layers. Nodes in this network may be selected with the
mouse in order to choose which layer’s filters are displayed in the
main view.

Details about the currently displayed filters are provided in the
upper-left corner of the display. Useful information like filter and
channel position, as well as values of the current filter currently
populate this display. In the future, this view might display infor-
mation, such as the current filter’s functional dependencies and the
relative importance of its activation to each image class.

We provide a search interface for the image training corpus that
allows users to search for and select images to pass through the net-
work. In 1, we have searched for the word “plane” and selected a
picture of an airplane. Our selected image is passed through the
current model snapshot and we can visualize the output at each
convolutional layer. Users can also click on images displayed in
other views to select them. The sidebar displays a histogram of the
model’s predicted classes for the selected image. A more compact
version of this histogram is displayed in the top-right corner of the
page and is present in each of our four views. This mini-histogram
allows users to quickly get a sense of the model’s confidence in its
predictions, which can be useful when using other views to inspect
misclassified images.

5.2 Confusion Matrix

The confusion matrix view, shown in Figure 4, helps users to diag-
nose “hot-spots” of misclassification in their model. The matrix’s
rows corresponds to true image classes and its columns correpond

CGonfusion Matrix

airplane automobile bird cat deer dog frog horse ship truck
airplane 3780 0 224 766 49 82 13 59 1008 21
automobile 670 1191 65 972 92 306 18 120 2015 551
bird 501 1 2081 2159 353 624 21 51 202
cat 114
deer 329

0
0
dog 51 0
0

frog 131

horse 95 0 186 1322 606 1056 2 2643 82 8

ship 364 0 34 484 6 79 0 5 - 1

truck 373 16 40 1212 81 341 7 252 1127 2551

Figure 4: Confusion Matrix

to the model’s predicted classes. In each cell, we display the num-
ber of images of true class x that (mis)classified as class y. A per-
fect classifier would produce a diagonal confusion matrix (with ze-
ros everywhere but on the main diagonal).

Cells are shaded according to their value, which can help draw at-
tention to misclassifications, since off-diagonal cells that are dark
indicate high rates of classification error.

When the user mouses over individual cell, the cells expand to show
a sample of images that fall into that cell. These small multiples en-
able users to get an intuitive feel for which sorts of images tend to
be misclassified. If the misclassified images share common visual
structure, the user may choose to give special treatment to this struc-
ture in a future version of their model. For example, if dark pictures
tend to be misclassified, the user might choose to normalize input
images before feeding them into the network.

Like the main filter display, the confusion matrix view is linked to
the timeline slider to show how the model evolves over time.

Figure 5: Cluster View

5.3 Clustered Images

To further aid in the diagnosis of classification errors, the clustered
images view (shown in Figure 5) displays a set of sample images
clustered by their similarity in the /ast layer of fully-connected out-
put.

With this particular model, this is a 10-dimensional vector of neuron
activations. We cluster these into 30 clusters using K-Means with a
Euclidean distance metric. For each cluster, we display the top 20
closest images to the cluster center. If a user wants to understand
what might be causing a certain group of misclassifications, they
can inspect these clusters and see if any there is, for example, a
sub-class of airplane images that looks more like a bird than an
airplane. The user may then adjust the parameters of their model to
better handle this case — for example, by increasing the resolution
of their filters at an early layer.

Again, the time slider appears in this view to enable the user to see
how these clusters evolve as the output of the fully connected layer
changes at each model checkpoint.

In the current model, this view is not particularly interesting. We
are unsure of the cause, but it may be because the scale of the FC10
activations is non-uniform across images. In future work, we may
experiment with alternate distance metrics in the clustering algo-
rithm (such as cosine similarity), or perform clustering on different
layers, such as the FC64 layer.

To our knowledge, this is a novel approach for diagnosing misclas-
sification issues in the context of convolutional neural networks.

5.4 Direct Comparison

In the direct comparison view, shown in Figure 6, we allow the user
to select a set of layers and filters and compare them directly across
multiple checkpoints. We make use of our backend’s flexible query
functionality to request images for several model checkpoints, lay-
ers, filters, and channels all at once. The results are displayed,
again using the small multiples technique, with position encoding
the model checkpoint in rows, and convolutional layer in columns.

This view enables the user to better understand the global structure
of some subset of the model and directly compare snapshots of the
model at two time steps without waiting for the animation to change
the image.

We also provide the ability to show the application of the model to
an image with the same selection criterion as the model currently
on display.

Since we encode time point with row position in this display, we do
not need to make use of the timeline slider in this particular display
and the visualization is static. Nevertheless, this display clearly
emphasizes the dynamic nature of the model over time and allows
the user to understand that nature better.

In its current implementation, the parameters of this view are hard-
coded. We expect to add interaction controls shortly.

We can already see some utility and insights with this view. For
example, layers that are initialized with high-variance activations
remain layers with high variance activations in the final model. The
filters in the fifth row and last row of the first convolutional layer
all start with high variance activation and remain high variance at
the end. Further investigation may allow us to conclude that these
filters play a dominant role in later neuron activations. We can use
this information to inform our model initialization. For example,

we may decide that we should initialize our filters with higher vari-
ance inputs across the board, or to apply regularization to our initial
layers during training.

Direct Compare

convi conv2 conv3

Time: 1

Figure 6: Direct Compare

6 Future Work

There are several other visualization techniques that we would like
to explore in future work.

Our current interface allows users to view activations for individual
images, but it could also be useful to view the aggregated activa-
tion of several images. For example, it might be helpful to compare
the activation patterns of images airplanes and images of cars in or-
der to identify features that could contribute to confusion of these
classes. In addition to side-by-side comparison, we could display a
single combined image of multiple aggregate activations by using
hue to encode the most activating class and saturation to encode the
strength of the correlation between a filter and its most activating
class. With this style of visualization, we might expect the filter
to be desaturated during the first few checkpoints and more satu-
rated in deeper layers and at layer checkpoints as neurons become
specialized.

To help to understand the behavior of individual filters, we plan to
extend our statistics database to track the top activating images for
each filter at every checkpoint. When mousing over filters, we will
display these images to give a qualitative summary of the types of
images for which they are most responsive.

We also plan to enable side-by-side views of models with different
structures or tuning parameters in order to compare their perfor-
mance and convergence rates. We hope that this will help model

builders to keep track of their explorations through the model de-
sign space.

7 Conclusion

We have presented deepViz, a visualization tool aimed at help-
ing experts understand and diagnose issues with their convolutional
neural networks for visual classification. The tool consists of a pro-
cessing backend and a web front-end that allows the user to explore
various aspects of their models - from understanding the develop-
ment of convolutional structure, to better understanding common
types of misclassification.

Daniel Bruckner worked on instrumenting cudaconvnet with
model checkpoint information, as well as several frontend features.
Josh Rosen worked on the Flask application, the caching layer, and
complete integration with decaf. He was also responsible for the
front end and the first implementation of the statistics database.
Evan Sparks worked on the initial decaf integration, the flexi-
ble query backend, the document clustering and direct compare
view. All group members contributed to writing, poster, and pre-
sentation.

References

BOOTSRAP. http://getbootstrap.com/.

BRUNA, J., AND MALLAT, S. 2012. Invariant scattering convolution networks. arXiv
preprint arXiv:1203.1513.

D3. http://d3js.org/.

DEAN, J., CORRADO, G. S., MONGA, R., CHEN, K., DEVIN, M., LE, Q. V., MAO,
M. Z., RANZATO, M., SENIOR, A., TUCKER, P., YANG, K., AND NG, A. Y.
2012. Large scale distributed deep networks. In NIPS.

DONAHUE, J., JIA, Y., VINYALS, O., HOFFMAN, J., ZHANG, N., TZENG, E., AND
DARRELL, T. 2013. Decaf: A deep convolutional activation feature for generic
visual recognition. arXiv preprint arXiv:1310.1531.

DucHI, J., HAZAN, E., AND SINGER, Y. 2011. Adaptive subgradient methods for
online learning and stochastic optimization. J. Mach. Learn. Res. 12 (July), 2121—
2159.

HEALEY, C. G. 2007. Perception in visualization. Retrieved February 10, 2008.
IMAGENET, 2013. http://www.image-net.org/.

JARRETT, K., KAVUKCUOGLU, K., RANZATO, M., AND LECUN, Y. 2009. What is
the best multi-stage architecture for object recognition? In Computer Vision, 2009
IEEE 12th International Conference on, IEEE, 2146-2153.

JQUERY. http://jquery.com/.

KRIZHEVSKY, A., NAIR, V., AND HINTON, G. Cifar-10 dataset. http://www.
cs.toronto.edu/~kriz/cifar.html.

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. 2012. Imagenet classification
with deep convolutional neural networks. 1106—1114.

KRIZHEVSKY, A., 2012. cuda-convnet. https://code.google.com/p/
cuda-convnet/, July.

LE, Q. V., RANZATO, M., MONGA, R., DEVIN, M., CHEN, K., CORRADO, G. S.,
DEAN, J., AND NG, A. Y. 2011. Building high-level features using large scale
unsupervised learning. arXiv preprint arXiv:1113.6209.

LECUN, Y., BoTTOU, L., BENGIO, Y., AND HAFFNER, P. 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86, 11, 2278—
2324.

MOVELLAN, J. R. Tutorial on gabor filters.
NUMPY. http://www.numpy.org/.
SCIKIT.LEARN. http://scikit-learn.org/stable/.

TUFTE, E. R. 1991. Envisioning information. Optometry & Vision Science 68, 4,
322-324.

VEGA. http://trifacta.github.io/vega/.

VONDRICK, C., KHOSLA, A., AND MALISIEWICZ, T. 2013. HOGgles: Visualizing
Object Detection Features. ... Vision (ICCV).

WIKIPEDIA, 2013. Kernel (image processing) Wikipedia, the free
encyclopedia. http://en.wikipedia.org/wiki/Kernel_(image_
processing). [Online; accessed 11-Dec-2013].

YAMINS, D., TAX, D., AND BERGSTRA, J. S. 2013. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures. In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), 115-123.

ZEILER, M. D., AND FERGUS, R. 2013. Visualizing and Understanding Convolu-
tional Networks. arXiv.org (Nov.).

ZEILER, M. D., TAYLOR, G. W., AND FERGUS, R. 2011. Adaptive deconvolutional
networks for mid and high level feature learning. 2018-2025.

http://getbootstrap.com/
http://d3js.org/
http://www.image-net.org/
http://jquery.com/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://code.google.com/p/cuda-convnet/
https://code.google.com/p/cuda-convnet/
http://www.numpy.org/
http://scikit-learn.org/stable/
http://trifacta.github.io/vega/
http://en.wikipedia.org/wiki/Kernel_(image_processing)
http://en.wikipedia.org/wiki/Kernel_(image_processing)

