Conveying Shape: Lines Maneesh Agrawala CS 294-10: Visualization Fall 2013

Document x **Term** matrix

Each document is a vector of term weights Simplest weighting is to just count occurrences

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Antony	157	73	0	0	0	0	
Brutus	4	157	0	1	0	0	
Caesar	232	227	0	2	1	1	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
mercy	2	0	3	5	5	1	
worser	2	0	1	1	1	0	
							ļ

Keyword Weighting

Term Frequency

 $tf_{td} = count(t) in d$

TF.IDF: Term Freq by Inverse Document Freq $tf.idf_{td} = log(1 + tf_{td}) \times log(N/df_t)$

 $df_t = #$ docs containing t; N = # of docs

Recurrent themes in speech

Takeaways

Show (or provide access to) source text Let readers assess model Let readers use visualization as index into documents

Find meaningful abstractions for grouping docs

Are clusters interpretable?

Where possible use text to represent text... but which terms are the most descriptive?

Announcements

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- **8**-12 page paper in format of conference paper submission
- 1 or 2 design discussion presentations

Schedule

- Project proposal: 10/28
- Project presentation: 11/13, 11/18 and 11/20
- Final paper and presentation: ?? 12/12 (3-5pm) ??

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Topics

Photographs vs. drawings Types of lines Lines of curvature Silhouettes and contours Graphical drawing conventions Effects of drawing style

A photographic depiction captures the exact appearance of the object as we actually see it

Subtle, complex details of coloration and texture are fully represented, with great accuracy

Photograph of the right hip bone (lateral aspect). Johannes W. Rohen and Chihiro Yokochi. <u>Color Atlas of Anatomy:</u> <u>A Photographic Study of the Human Body,</u> Igaku-Shoin, 1993.

Photo vs. drawing

Hand-drawn illustrations are routinely used to emphasize important features that are difficult to capture in a photograph, while minimizing secondary detail

Drawings are also useful to portray information that cannot be captured or represented photographically, such as hidden surfaces

Their conclusion

Superiority of performance (photo vs. drawing) varies with the application

Response times were consistently longest for the basic line drawing images

Study of picture preferences

Realistic

Patent Ductus Arteriosus

Esophageal Fundoplication

K. Hirsch and D. A. McConathy, "Picture Preferences of Thoracic Surgeons", Journal of BioCommunications, Winter 1986, pp. 26-30.

Study of picture preferences

Semi-Schematic

Esophageal Fundoplication

K. Hirsch and D. A. McConathy, "Picture Preferences of Thoracic Surgeons", Journal of BioCommunications, Winter 1986, pp. 26-30.

Results

Surgeons rated the 'schematic' representation least preferable; the 'semi-schematic' and 'realistic' representations were preferred in equivalent numbers.

Lines signify features

Geometric features

- Creases
- Boundaries
- Self-intersections
- Silhouettes
- Isoparametric lines
- Parabolic lines
- Principal directions of curvature

Lines signify features

Material features

- Texture features
- Material boundaries

Lighting features

- Attached and unattached shadows
- Highlights and highlight boundaries
- Isoluminance contours
- Luminance extrema

Two big issues

Which lines to draw?

How to draw the lines?

Lines of Curvature

Gaussian curvature

 K_1 = curvature in first principal direction K_2 = curvature in second principal direction Gaussian curvature: K = K₁ K₂ Mean curvature: H = (K₁ + K₂) / 2

K > 0 : elliptic, convex or concave
K < 0 : hyperbolic, saddle-shaped
K = 0 : parabolic, cylindrical or planar

Drawing parameters

Haloed lines Taper near t-junction Control of line weight Highlighting Eye-lashing Sketchiness

Summary

Illustrations often better than photographs

- Enhance important features
- Deemphasize unimportant detail

Grand challenge

- Produce a good line drawing
- What lines, not just how to draw lines