Creating, Visualizing, and Exploring Knowledge Maps

Knowledge Maps

This is a section of a Khan Academy knowledge map for math concepts.

- nodes represent concepts
- edges specify prerequsite relationships
- associated content with each node/edge

6 [The knowledge map] became a core piece of the Khan Academy software platform. In stressing the connections among subjects and giving learners a visual picture of where they've been and where they're going, we hope to encourage students to follow their own path – to move actively up, down, and sideways, wherever their imaginations lead.

Tools for Creating Knowledge Maps

OmniGraffle diagramming software

visualiztion software

Goal: Create a visual, specific-purpose knowledge map editor

Knowledge map creation tools tend to fall into four broad categories:

- (1) general purpose diagramming software
- (2) general purpose graph placement and visualization software
- (3) specific purpose diagramming software
- (4) research software

Both Khan Academy and Metacademy use text-based (e.g. xml) to create/edit the maps and then use graphviz to generate the placement

Colorado Reed UC Berkeley – CS294-10 Visualization – Fall 2013

This is a Metacademy knowledge map for "Bayesian logistic regression."

• large number of nodes and edges • difficult to visualize relationships • difficult to follow paths

Sal Khan - Khan Academy (6M unique monthly visitors)

Cmap Tools concept mapping software

Knowledge map creation objectives:

- balance human and algorithmic placement
- allow quick editing of large graphs
- allow sharing/collaborating/version control
- export/import graphs to/from common formats
- Incorporate meta information (e.g. discussion)

This is the original knowledge map rendering using a layered (Sugiyama) graph placement (Metacademy's system). [41 edges]

Goal: clean, interactive, mental-map-preserving knowledge maps

Placement

- + Remove transitive edges (transitive reduction) (e.g. remove edge C->A if C->B, B->A exists)
- + only show short edges and structure edges (make sure every node has at least one outlink)
- + draw "wisp" edges to indicate absent edges (small edge segments protruding from nodes)

Visualization and Exploration

This is the same knowledge map as shown on the left but after removing transitive and non-structural edges and incorporating a number of interactive components. [33 edges]

Interaction

- + hovering over a node highlights all dependencies, outlinks, and shows all related edges
- + clicking an edge shows associated content on graph + clicking a node transitions to showing only the
- dependencies and outlinks of that node (see left) + search/filter concepts using the sidebar
- + directly show associated concept information on node

Knowledge Map Creation