Crowdsourcing Visual Analysis

Maneesh Agrawala

CS 294-10: Visualization
Fall 2013

Last Time: Collaborative Visual Analysis
A graveyard of “YouTubes for Data”

Many Eyes – circa 4/2012

128,478 Visualizations
17,340 Comments

only ~11% of comments provided a plausible hypothesis or explanation for the data in the chart
CommentSpace: Structured Support for Social Data Analysis

Can we augment social data analysis to support deeper analysis and synthesis?
Tight coupling of comments & views
Tags and links for organization

- Hypothesis
- Question
- To-Do

Links
- Evidence For
- Evidence Against
- (Related)

Hypothesis generation/evidence gathering

Contributors highlight important items with tags

Tags help late-joiners identify and build on important comments

Contributors use links to organize contributions and build narrative
Studies and Deployments

Controlled lab studies to test core analysis subtasks

Live deployments
(www.commentspace.net)
Study: Use of Tags and Links

Hypothesis: Tags and links can provide common ground and encourage continued discussion.
A between subjects study (n=24) with 2 conditions.

“No-Tag” Condition

“Tag” Condition

Study: Prompt

Hypothesis: Stereotypically male jobs have remained almost entirely male even as women have joined the work force.
Participants who used tags and links classified comments more **consistently** and **accurately** than those who didn’t

(greater in-group agreement) (greater agreement with experts)

Participants using tags and links generated significantly more replies to existing comments

Tag (Median=7)
No-Tag (Median=2)

Study: Results

But

In open-ended tasks, participants still engaged mostly in superficial, exploratory analysis

We saw very little use of tags or links
Can we use paid crowds to perform small pieces of analysis tasks?

Announcements
Final project

Design new visualization method
- Pose problem, Implement creative solution

Deliverables
- Implementation of solution
- 8-12 page paper in format of conference paper submission
- 1 or 2 design discussion presentations

Schedule
- Project proposal: 10/28
- Project presentation: 11/13-11/20
- Final paper and presentation: 12/2-12/6

Grading
- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Crowdsourcing Visual Analysis
Can we use paid crowds to perform small pieces of analysis tasks?
Generate Explanations

Explanation Microtask

Each of the charts in this HIT shows the average amount of oil produced per day by one or more countries over the past 50 years.

This chart shows Oil Produced (Thousand of Barrels/Day) by Year. The view is filtered by Country to show only "Iran".

1. Explain why the strong peak or valley highlighted in the chart might have occurred.
Generate Explanations

Rate Explanations
Rate
Explanations
Examine
Explanations

This chart shows Oil Produced (Thsnds. of Barrels/Day) by Year. The view is filtered by Country to show only "Iran".

Prompt: Explain why the strong peak or valley highlighted in the chart might have occurred.

1. Does this response provide an explanation for why the highlighted peaks and valleys in the chart might have occurred?
 - Yes
 - No
 - None Present

2. How clear and specific is the response?
 - (Not Clear/Specific)
 - Clear
 - Very Clear
 - (Very Clear/Specific)
Problems

Expectations may be unclear to workers.

Workers may explain irrelevant features.

Workers’ may give speculative explanations.

Workers may not attend to chart details.

Seven Strategies for Crowdsourcing
Social Data Analysis
S1. Use feature-oriented prompts.

“Explain why the chart is interesting.”

“Explain the **long term trend** in the chart.”

“Explain the **peaks and/or valleys** in the chart (if any exist).”
S2. Provide sample explanations

Example HITs and Responses

The examples below show the level of detail we would like in your responses.

Example 1

This chart shows Oil Produced (Trends, of Barrels/Day) by Year. The view is filtered by Country to show only "Iraq".

1. Explain why the strong peak or valley highlighted in the chart might have occurred.

2. Provide the URL of a specific web page (not just a site) that supports your explanation.

S4. Include reference-gathering subtasks
S5. Include annotation subtasks

Explanation Microtask

S6. Use pre-annotated charts
S7. Elicit explanations iteratively

Deployment
Deployment via Mechanical Turk

910 Responses for
64 Charts from
16 Datasets

Dataset: Foreign Holders of US Sovereign Debt 2008-2010

“… Speculation is that China is using UK brokers to
purchase more US securities.”
“The primary reason for the peak is …
… annual variation where home prices rise in the spring.
… the $8,000 home buyer tax credit.

“Grove City College is Christian based and strives to keep tuition rates affordable for most students.
… located in a rural community …
… selective enrollment …”

url: http://stateuniversity.com/…college.html
“Four large initiatives ...
... 1) Fort Bliss expansion ...
... 2) Construction at UTEP ...
... 3) new spending on highways ...
... 4) the Medical Center of the Americas”

url: http://newspapertree.com/opinion/3561-the-el-paso-stimulus

Quantifying Response Quality

relevance (0-1) Does the response explain the requested feature?
clarity (1-5) How clear and specific is the explanation?
plausibility (1-5) How likely is the explanation to be valid?

quality = relevance * (clarity + plausibility) / 2

Experts scored response quality this way.
Based on our ratings, the majority (63%) of responses were of high quality ($\text{quality} \geq 3.5$).

Do our strategies improve explanation quality?
Experiment 1 – Strategies S1-S5

No Strategies vs. Strategies (S1-S5)

US Workers vs. Non-US Workers

S1. Feature-oriented prompts.
S2. Good examples.
S3. Chart-reading subtasks.
S4. Reference-gathering subtasks.
S5. Include annotation subtasks.

Experiment 1 - Strategies S1-S5

200 Trials, 4 conditions
(2 interfaces x 2 worker pools)

H1: Results from US workers would be of higher quality than results from non-US workers, but

H2: Employing strategies S1-S5 would increase the quality for both groups.
Experiment 1

US Workers performed better than Non-US.

Using S1-S5 increased explanation quality:

196% for Non-US Workers
28% for US Workers

Significant main effects for

Worker Pool ($F_{1,198} = 12.2$, $p < 0.01$)
Strategies ($F_{1,198} = 14.5$, $p < 0.01$)
Experiments

Reference Gathering (S4)
Produced useful references, but slowed workers, increased attrition, and lowered quality.

Annotation Subtasks (S5) and Pre-Annotation (S6)
Both improve attention to detail but are useful in different situations.

Eliciting Explanations Iteratively (S7)
An Iterative round produced 71% new explanations, increasing diversity.

Do workers provide reliable quality ratings?
Experiment 2 - Rating

Elicited 1,334 ratings for 192 responses.

Compared against expert quality ratings.

Experiment 2 - Rating

Individual workers' quality scores were moderately correlated with ours.

\((\rho = 0.41) \)

The median quality from multiple workers correlates more strongly with our scores.

\((\rho = 0.70 \text{ w/ 10 raters}) \)
Takeaways

A workflow for generating and assessing explanations for trends and outliers.

Seven strategies for improving crowdsourced explanations.

Generates good explanations (63% were high-quality).

Exposing Provenance and Identifying Redundancy
Adding Additional Crowd Processing

Select Charts → Generate Explanations and Locate Sources
Examine Explanations → Rate Explanation Quality

Data → Analyst
Crowd → Check Sources, Cluster Explanations

Provenance
What are our workers doing?
Cross-Domain Access is Limited

Instrumenting Explanation Tasks
Instrumenting Explanation Tasks

Logging via Proxied Browser
High costs might come from its high room and board fees, due to its geographic location near NYC. Low graduation rates come from the fact that it is not a very selective school, taking in over 80% of applicants, which doesn’t allow it to take many top ranked students who are more academically motivated.

Did the facts and inference come from the source or did the worker add them?
Source-Checking Microtasks

A second group of workers verifies links and attributes explanations to the source or the worker. (75% accurate in our preliminary tests)
Redundancy

Many explanations provided by workers are *redundant*.

- Duplicate results for analysts to examine.

- Redundancy can signal high support and corroborating sources.

“The Church of Jesus Christ of Latter Day Saints pays a significant part of the tuition costs.”

“The cost of attendance at BYU is subsidized by the LDS church.”

“98% of their students are members of LDS and they have lowered tuition.”
Automated text similarity methods don't deal well with these kinds of content.

Redundancy

Can we crowdsource redundancy detection?
"98% of their students are members of LDS and they have lowered tuition."

"The cost of attendance at BYU is subsidized by the LDS church."

"...students are mostly members of the church and bound by the honor code."

"The Church of Jesus Christ of Latter Day Saints pays a significant part of the tuition costs..."
Clustering via Distributed Comparison

- '98% of their students are members of LDS and they have lowered tuition.'
- 'The cost of attendance at BYU is subsidized by the LDS church.'

Do these two responses give the same general explanation for the peaks and valleys in the chart?
- Yes. Both responses give the same general explanation.
- No. The responses do not give the same explanation.

Clustering via Color-Coding

Individual workers cluster the whole set.

- Workers have complete context
- Individual workers can cluster badly
- Hard to integrate clusterings from multiple workers
How to Integrate Color-Clusterings?

1. A **single worker's clustering** is preferable to a combination of multiple clusterings.

2. Clusters reproduced by multiple independent workers are likely to reflect actual redundancy.

3. Errors tend to be either noisy or easy to catch.

Selecting the Most-Representative Clustering
How to Integrate Color-Clusterings?

Selecting the Most-Representative Clustering

Convert into a Similarity Matrix
Selecting the Most-Representative Clustering
Selecting the Most-Representative Clustering

Evaluate Redundancy Detection

Does color clustering with most-representative selection produce good clusterings?

Our Explanation Dataset
12 charts (4 each from 3 different data sets)
10 workers explained each chart
93 Workers produced 156 explanations (avg=13/chart)
Evaluating Redundancy-Detection

Does color clustering with most-representative selection produce good clusterings?

10 Workers used color clustering to group the explanations for each chart. (120 total clusterings)

We used most-representative selection to pick the best clustering for each chart. (12 clusterings)

Evaluating Redundancy-Detection

Baseline - Expert clustering (x 3)

To score a clustering, we use the F-measure to compute similarity to each expert, then average.

(completely dissimilar) [0, 1] (identical)
Evaluating Redundancy-Detection

Unclustered Results \(F=0.68\)
Color Clustering \(F=0.73\)
Most-Representative Selection \(F=0.86\)
Experts vs. One Another \(F=0.84\)

T-tests showed our most-representative results were significantly closer to experts than color clustering or unclustered were. (both \(p < 0.01\))
Managing the Crowd's Work
Open Questions

Segmenting Explanations

Explanation 1
The expansion of Fort Bliss and base assignments
led to an increase in the region's economy between 2005 and
2010.

Source:
Use the embedded browser on the right
to find evidence for your explanation.

Add Another Explanation
Open Questions

Segmenting Explanations

Crowd Composition

cheap low-skill crowds
vs.
more knowledgeable trusted ones

Conclusion