Crowdsourcing Visual Analysis

Maneesh Agrawala

CS 294-10: Visualization Fall 2013

Last Time: Collaborative Visual Analysis

CommentSpace: Structured Support for Social Data Analysis

Can we augment social data analysis to support deeper analysis and synthesis?

Studies and Deployments

Study: Results

Participants who used tags and links classified comments more **consistential** and **accurately** than those who didn't (greater in-group agreement) (greater agreement with experts)

Participants using tags and links generated significantly more replies to existing comments

Tag (Median=7) No-Tag (Median=2)

Announcements

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- **8**-12 page paper in format of conference paper submission
- 1 or 2 design discussion presentations

Schedule

- Project proposal: 10/28
- Project presentation: 11/13-11/20
- Final paper and presentation: 12/2-12/6

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Problems

Expectations may be unclear to workers.

Workers may explain irrelevant features.

Workers' may give speculative explanations.

Workers may not attend to chart details.

Seven Strategies for Crowdsourcing Social Data Analysis

<image/>	What are our workers doing?
----------	--------------------------------

Evaluating Redundancy-Detection

Does color clustering with mostrepresentative selection produce good clusterings?

10 Workers used **color clustering** to group the explanations for each chart. (120 total clusterings)

We used **most-representative selection** to pick the best clustering for each chart. (12 clusterings)

Evaluating Redundancy-Detection **Baseline** - Expert clustering (x 3) To score a clustering, we use the **F-measure** to compute similarity to each expert, then average. (completely dissimilar) $[0 \leftarrow 1]$ (identical)

