A D3 plug-in for automatic label placement using simulated
annealing

Evan Wang

Abstract—Although labeling graphical features can help viewers quickly grasp complex nuances of the data, it is a very time-
consuming process. For the majority of point-feature label placement problems, the rules are relatively straightforward. Therefore,
this is a problem very much suited for automated labeling algorithms. Automatic label placement is widely used by map generators,
but surprisingly, there is little evidence that individuals use it. One reason might be that for many advanced plotting tools favored
by scientists and engineers, there is often no sophisticated built-in labeling function. A possible solution is to create a plug-in (also
called extension or add-on) for an existing program that performs label placement. Such plug-ins do exist for some plotting programs,
with varying sophistication and ease of use. In this work, | plan to write build an automatic labeling plug-in for the popular JavaScript
visualization library D3 that implements simulated annealing and easily incorporates into existing D3 code, with syntax mirroring other

D3 layouts.

Index Terms—automatic label placement, simulated annealing, D3, plug-in

1 INTRODUCTION

Labeling features or data points, more commonly known as point-
feature label placement, is an integral part of a visualization because
it helps viewers quickly see what the data represents and points out
nuances that could otherwise be overlooked. However, manually la-
beling features is a very time-consuming task. According to Cook and
Jones, cartographers place approximately 20-30 labels per hour [1].

Given the time required to manually place labels, automatic label
placement is used widely by map generators such as LineDrive [2].
However, there is little published or empirical evidence that indicates
individuals frequently use automatic labeling. This presents a conun-
drum. Why would so many individuals manually label graphs and
charts even though doing so requires a substantial time commitment?
Not only that, an optimization problem such as this is perfectly suited
for one of many standard search/optimization algorithms available.
One reason is that for advanced plotting tools (R, D3, Matlab, Math-
ematica, and Matplotlib) favored by scientists and engineers, there is
often no sophisticated built-in automatic label placement function. In
order to label a scatter plot, one often has to resort to tweaking labels
manually. A possible solution to the problem is to create a plug-in
(sometimes called extension or add-on) for an existing program that
performs the label placement. Plug-ins do exist for some of the afore-
mentioned plotting tools.

In particular for D3, an increasingly popular Javascript visualiza-
tion library, there are presently label placement implementations avail-
able that make use of the D3 force layout [16, 17]. However, the force
layout (based on force-directed algorithms) is an algorithm for draw-
ing graphs, specifically undirected graphs [3]. And although it can
be effectively adapted for labeling, it is not built for such a task and
therefore many of the nuances of good labeling practices cannot be
implemented. For my project I have implemented a D3 plug-in for
automatic label placement using simulated annealing that incorporates
good label placement practices and is easy-to-use.

2 RELATED WORK
2.1 Label placement rules

The layout of a labeling problem is shown in Fig. 1. Each label cor-
responds to an anchor point. A leader line may be used to help with
the correspondence between the label and anchor point [14]. None
of the elements may cross the graph boundary. The general rules

o Author email: evan.wang @berkeley.edu

Label
\

Russian Hill North Beach

Leader line +——

o'.\
\

Anchor point

Graph boundary

Fig. 1. Anatomy of a label problem. Each /abel corresponds to an
anchor point. A leader line may be used to help with the correspondence
between the label and anchor point. None of the elements may cross
the graph boundary.

for label placement have been carefully studied by many, most no-
tably described by Imhof [4, 5] and more quantitatively formulated by
Yeoli [6]. The basic rules are:

e Spatial overlap: Labels should not overlap with each other or
other point features.

e Unambiguity: Labels should be clearly and unambiguously iden-
tified with its corresponding graphical feature(s).

e Legibility: Labels should be easily readable.

Comparisons of good and bad labeling practices are showin in
Fig. 2. Fig. 2 (a) is an example of a bad label configuration because it
does not follow Imhof and Yeolis rules. There are several label-label
overlaps, label-anchor overlaps, and in general a sense of randomness
in how the labels are placed. This results in ambiguity in label-point
correspondence and for the viewers, a longer time or even inability
to process the data. In contrast, Fig. 2 (b) shows a much better label
configuration because there are no overlaps of any kind and there ex-
ists a much greater readability due to the ordered nature of the label
placements.

In addition to these rules, Imhof described a set of more specific
stylistic rules pertaining to specific label positions [4]:

e Label position on the right is preferred over left.
e Label position on top is preferred over below.

e Label position closer to the corresponding point feature is pre-
ferred.

A visual representation of Imhof’s stylistic rules are shown in Fig. 3.

(a)
Golden Gate Park
@ission

Nog Valley No® Hil

weRtern Additio
Pacificeloghi Beach

Union Square (] ;
® TendgrlaHSS'an Hill

(b)
Golden Gate Park
Mission..

Noe Valley .Nob Hill

.Western Addition
North Beach

.Russian Hill

Pacific Heights®

Union Square. e'enderloin

Fig. 2. Good and bad label placements. (a) Bad label placement:
Some labels overlap with each other and/or with anchor points. In ad-
dition, there are no conventions for preferred placement positions. This
creates ambiguity in terms of which label corresponds to which data
point. (b) Good label placement: There are no overlaps, labels tend to
be situated in a corner of the data point, and consequently, no ambiguity
for label-data correspondence.

2.2 Search space

So far, our description of the problem has been qualitative (i.e. de-
scription based rules such as avoid overlaps, place labels in more pre-
ferred positions). For an optimization problem such as this, we have
to first define the search space [7]. In a labeling problem, the search
space consists of the collection of label positions. Each configuration
of label positions, or state (V), can be written as

V={}’171‘2,}’3,...}’N}7 (1)

where r = (ry,ry) is used as a shorthand to denote the position of each
label. Additionally, each individual component of every label position
r must satisfy the constraints of the graph boundaries,

e > L;”"'
ry < L

min
ry>Ly

(@)
ry < Ly

All label configurations that satisfy the boundary conditions are per-
missible. The search space contains 2N degrees of freedom, where
N is the total number of labels. It is important to note that we have
allowed neither the fontsize of the labels nor the orientation (tilt) to
be a free parameter. Adding these elements as free parameters would
increase the dimensionality of the problem (an additional N degrees of
freedom for each added parameter), but is otherwise entirely possible
and straightforward. However, size and orientation are mostly used in
cartographic applications were the various geographical features ne-
cessitates their usage and utility. For label point features in graphs,
features such as size and orientation are usually fixed and is the reason
for their exclusion.

2.3 Energy function

Of course, not all points in the search space are equally preferable.
Label configurations that result in less overlap and in general adhere
to label placement rules are more preferred. In Fig. 2, both (a) and (b)

Nob Hill
Nob Hill

Nob Hill
Nob Hill

@® Nob Hill

Fig. 3. Preferred label positions. The relative preference of the posi-
tions (according to Imhof [4]) are indicated according to the color satu-
ration of the label. Darker labels represent more desirable positions.

are permissible states or configurations in the search space. However,
Fig. 2 (a) is the more preferred label configuration because there are
less overlaps and greater readability. In order to distinguish between
the quality of different configurations in our search space, we need
construct a function which takes as input a label configuration and
outputs a score indicating the quality of the placements. In a labeling
problem, the inputs are themselves functions of various parameters
such as the amount of overlaps, distances between labels and their
corresponding anchor points, and various stylistic preferences. This
function, often an energy (also called cost or objective) function, is
what we need to optimize. Based on Imhof and Yeoli’s rules [4, 5, 6],
our energy function for each individual label i depends on

Ei = f(Ai,A1p,Lip, 0), (3)

where Ay, is the area of label-label overlaps, A;, is the area of label-
point overlaps, L, is the distance between the label and the point, and
0 is the orientation of the label relative to the point. The form of our
energy function for label i for a system with N total labels is then

N N
Ei=Y AyWy+ Y AW, + LWy, + 6We, (€]
J#i J#i

where the W terms are weight constants signifying the relative im-
portance of each rule. For each label i, we sum over all other labels
and points in order to compute the total area overlap. The greater the
overlap, the higher the resulting energy. To obtain the total energy, we
simply sum over each label, or index i

N
EtDt :ZEI (5)
i

These are only an example of an energy function for a labeling prob-
lem. Different terms can be inserted or removed based on individual
preferences.

2.4 Overview of algorithms

The labeling problem is essentially an optimization problem on
a complex and high-dimensional energy landscape. Therefore, many
possible classes of algorithms can be applied. A shortlist of the more
well-known algorithms include random placement, exhaustive search
algorithms, greedy algorithms, local search algorithms, stochastic
search algorithms, genetic algorithms, and mathematical program-
ming [7]. In general, these algorithms may be categorized into lo-
cal search methods and global optimization methods. For the sake of
brevity, I will give a more detailed overview for the more widely used
algorithms.

2.41

In general, a greedy algorithm makes a locally optimal choice at
every step without backtracking. As applied to label placement, the
algorithm is the following. With respect to labeling, this means that
labels are placed serially, and each label is placed to minimize the
current energy, given the positions of the other labels. Algorithmically,

Greedy algorithm

it is implemented as follows.

while all points are not labeled do
select an unlabeled point;
place label according to preset rules;
if no free position then

leave out the label;

or

label point even with overlap;

or

ask for feedback from human;
end

end
Algorithm 1: Greedy algorithm

Greedy algorithms are best suited for problem in which “thinking
ahead has little benefit. Physically, since we are freezing the con-
figuration of all other labels, the energy landscape is always two-
dimensional. With each label, we are finding the global minima of that
two-dimensional and changing landscape. We never consider the en-
tire 2N-dimensional landscape. This is the so-called myopic behavior
associated with greedy algorithms [15]. However, the labeling prob-
lem is best solved by finding a minimum on the full energy landscape,
and not simply minima on two-dimensional slices of the landscape.
Thus while generally very fast, the greedy algorithm frequently gener-
ates label configurations that could be vastly improved [7].

2.4.2 Gradient descent

An gradient descent implementation of automatic label placement
is generally considered better than using a greedy algorithm because
we now can fine tune a particular configuration by local label move-
ments. The algorithm is as follows [8].

while convergence not reached do
randomly make several perturbations to the configuration;
calculate decrease in cost function AE;
accept the perturbation with the most negative AE;
end
Algorithm 2: Gradient descent

Although it generally performs better than greedy algorithms, gra-
dient descent is still a local optimization technique. This means that
it tends to get stuck in minima close to the starting configuration and
cannot escape into a deeper local minimum that is further away. There-
fore, the initial placement of label positions is extremely important be-
cause only the local landscape is accessible. This idea is illustrated in
Fig. 4. In the one-dimensional slice of the energy surface, the green
circle illustrates the starting configuration. Local optimization results
in configurations that at the bottom of the nearest local minimum fol-
lowing the steepest gradient. However, a nearby deeper local mini-
mum is avoided. So often, the problem reduces to a very careful place-
ment of initial label positions, which is more or less the problem we
are trying to solve in the first place. Our goal is to spend minimum ef-
fort on the initial configuration and let the algorithm find a good label
configuration. For these reasons, using gradient descent algorithms of-
ten result in less optimum label configurations for anything except the
simplest of label placement problems.

2.4.3 Simulated annealing

Given the high dimensional nature of a problem such as label place-
ment, a global search algorithm is preferred over a local one because
global algorithms can avoid being trapped in local minima. Simu-
lated annealing is one such algorithm [9, 10]. It is not an exhaustive
global search algorithm. For any sizable system (i.e. relatively high
number of labels), the search space is enormous (2N degrees of free-
dom) and sampling all the configurations is neither feasible nor a wise
use of computational resources. Therefore, we want to focus on label
configurations that are low in energy. This is exactly what is done in
simulated annealing. We make random changes to the label positions,
and we accept these changes with a probability proportional to their
Boltzmann weight. The probability by which we accept these moves
is modulated by a temperature term (7'). Temperature can be viewed

Fig. 4. Local search algorithms. Local search algorithms such as gra-
dient descent find nearby local minimum. In this one-dimensional slice
of the energy landscape (the unlabeled vertical axis is energy or cost),
the green circle illustrates the starting configuration. Local optimization
results configurations located at the bottom of the nearest local mini-
mum following the steepest gradient. However, a nearby deeper local
minimum is avoided.

as the amount of energy the system possesses in order to jump over
energy barriers. This is visually represented in Fig. 5. Higher the tem-
perature, the more likely we are to accepting configurations that have a
high energy. Lower the temperature, the less likely we are to accepting
these moves. In the case of T = 0, we go to the bottom of the near-
est energy well. We start at a higher temperature in order to explore
the high dimensional energy surface. However, we slowly decrease
the temperature according to a schedule, also known as annealing the
system. By doing so, we are focusing our search on deeper minima,
and avoiding the higher energy configurations. The hope is that as the
temperature gets very low, we have found either the global minimum
or a very low energy local minimum.

(a) High temperature

(b) Low temperature

Fig. 5. Simulated annealing at high and low temperatures. The
unlabeled vertical axis is energy. (a) At higher temperatures, we are
not likely to accept configurations that have a high energy. We start
at a higher temperature term in order to explore the high dimensional
energy surface. (b) At lower temperatures, we are less likely to accept
high energy configurations. In the case of T =0, we go to the bottom
of the nearest energy well. As the simulation progresses, we slowly
decrease the temperature, also known as annealing the system. By
doing so, we are focusing our search on deeper minima, and avoiding
the higher energy configurations. The hope is that as the temperature
gets very low, we have reached either the global minimum or a very low
energy local minimum.

The protocol by which we lower the temperature is very important
to the resulting configuration. If the temperature is lowered very fast,
often called “quenching”, the system can potentially get trapped in a
nearby local minima, resulting in a less than optimum final config-

uration. It is recommended that the system cools slowly rather than
rapidly [12], the reason being that we always want to keep the at or
close to the equilibrium at all temperatures. The most often used cool-
ing schedules have been either linear

T(n) = Tha", (6)

or exponential
T(n)=To—Pn, @)

where Tj is the initial temperature, o, 3 are constants, and n is the
number of steps taken [13].

Simulated annealing is often used with the Metropolis acceptance
criteria [11],

o—AE[ksT

Pacc:{ 1

where P, is the probability of accepting a new label configuration,
AFE is the change in energy of the system going from one configuration
to another, kp is Boltzmann’s constant, and 7 is the system tempera-
ture. In our case, we will denote temperature in reduced units of kp for
simplicity. The algorithm for simulated annealing is as follows.

if AE>0

if AE<O0 ®)

while convergence not reached do
attempt a move v —V' by translating or rotating labels;
evaluate change in energy AE = E\ — Ey;
if AE < O then
| accept new configuration;
else
generate random number & between 0 and 1;
if & < e 2E/T then
| accept new configuration;
else
| reject configuration;
end
end
decrease T according to schedule;

end
Algorithm 3: Simulated annealing

3 METHODS
3.1 Choice of algorithm

For any nontrivial labeling problem, the energy landscape will be
very high-dimensional (2N degrees of freedom) and rough. In order
to find a good label placement configuration, we have to avoid getting
trapped in local minima. Therefore, global search algorithms are more
suited than local search algorithms. Out of the many global search
algorithms available, simulated annealing is one of the more favored
algorithms because of its simplicity, flexibility, and intuitive physical
basis. It is also important for me to choose an algorithm that many
people are familiar with, so that they can build on my work and add
additional functionality to suit their specific labeling preferences. For
these reasons I have implemented the automatic label placement plu-
gin using simulated annealing.

3.2 Incorporation within D3

My implementation is more generally a D3 simulated annealing
graphical layout, adapted for the problem of label placement. The en-
ergy function in the layout corresponds to a particular set of graphical
rules that are described in the sections below. However, the users have
the option to define custom energy functions in order to suit individ-
ual labeling preferences (details in Sec. 5.2). Furthermore, with ad-
ditional changes, the simulated annealing tools within the plug-in can
be adapted for any optimization problem, such as drawing a node-link
diagram.

3.3 Energy function

The specific form of the energy function dictate the landscape of the
search space. Therefore, a carefully constructed energy function that
incorporates good labeling practices is crucial to the resulting labeling
configuration. The energy function in the current implementation in-
cludes terms for rules that I believe will appeal to a wide audience of
students, academics, and scientists in the industry setting. A tabular
summary of all the energy terms is shown in Table 1. In the follow-
ing subsections I will describe in more detail the various terms in the
energy function and their corresponding labeling rules.

3.3.1

Perhaps the most important rule in label placement is to avoid label-
label and label-anchor overlaps. Overlaps not only hinder our ability
to decipher text but also compromise the overall aesthetics of the plot,
giving it an unprofessional look. We use the following energy terms to
account for overlaps

Label-label and label-feature overlap

Eaverlap — i % W]ah—labAg;;b—lab + iiwlab—ancA%b—anc7 9)
i j#i i

where the first double sum represents the label-label overlaps and the
second double sum represents the label-anchor overlaps. A;; is the
area of the overlap between label i and label or anchor j, and W is the
weight of the overlap energy penalties. In order to calculate overlaps,
the labels as well as the anchor points have been approximated as rect-
angles. The overlap term in the energy function is simply the area of
overlap between the rectangles. This is illustrated in Fig. 6.

(a) Label-label overlap (b) Label-anchor overlap

Russian Hill
B N\
\. ®
[

Fig. 6. Label-label and label-feature overlap. In order to calculate
overlaps, the labels and anchor points have been approximated as rect-
angles. The overlap term in the energy function is simply the area of
overlap between the rectangles. Overlap areas for (a) label-label and
(b) label-anchor are colored in red.

3.3.2 Distance between feature and corresponding label

Label positions closer to the corresponding point feature are pre-
ferred [4]. The further a label is positioned from its anchor point, the
more difficult it is to detect correspondence. To account for this, we
use an energy penalty that is linear in the distance. The contribution to
energy corresponding to the label-feature distance is

N
Edisr _ Z dedi,

L

(10)

where d; is the Euclidean distance between the label i and its corre-
sponding anchor point, and W% is the weight of the energy penalty.

3.3.3

The intersection of leader lines can hinder our ability to following a
line to the end point, delaying our comprehension of the data. The
energy penalty is simply a linear function of the number of leader line
intersections

Intersection of leader lines

N
Emtersect — Z’VVlrttersectli7

1

1)

where I is a count of the total number of leader line intersections and
ywintersect i the weight of the energy penalty.

3.3.4 Label orientation

In addition to the more obvious rules of avoiding overlaps and line
intersections, Imhof also described a set of stylistic rules, including
the relative desirability of label positions. This is shown in Fig. 3. An
energy term was constructed in order to mimic these stylistic rules

N
Eorient _ Z Worient Qi7 (12)
i

where Q = 1,2,3,0r 4 is the quadrant preference index in Fig. 7 and
werent js the weight of the energy penalty. A pictorial representation
of this energy function is shown in Fig. 7.

) ©)

@

Fig. 7. Orientation bias. In Imhof’s seminal work on label rules, he set
forth the relative desirability of label positions. This is shown in Fig. 3.
An energy term was constructed in order to mimic these stylistic rules.
Red is used to indicate presence of an energy penalty. Darker color and
higher number (quadrant preference index Q) represents higher energy
penalty.

3.4 Monte Carlo moves

If we only use label translation moves, in theory, we are able to
sample the entire configuration space of label positions. However, this
will not ensure the most efficient sampling protocol, as measured by
the time needed to find a sufficiently low energy minimum. This is
because in general, it is more preferential for a label to be close to the
corresponding data point. If a label is at an optimum distance away
from its data point but in the wrong orientation, it would likely take
many translation moves for the label to shift to the right orientation,
because in general translation a label changes its distance from the
data point. In this case, rotation moves will on average shift the label
to the right orientation faster. Therefore, to ensure both an ergodic and
efficient sampling of the conformational space, we use a combination
of label translation and label rotation moves. These moves are shown
in Fig. 8.

(a) Label translation (b) Label rotation

Union Square

Union Square

XY
° Union Square

Union Square

AN

Fig. 8. Monte Carlo moves. To ensure both an ergodic and efficient
sampling of the conformational space, we use a combination of (a) label
translation and (b) label rotation moves.

3.5 Annealing schedule

As mentioned before, the choice of good annealing schedule is very
important to the quality of the final configuration. For this problem I
choose the popular linear cooling protocol [13]

Ty

O

13)

where Ty is the initial temperature, n is the current number of Monte
Carlo sweeps that have been implemented, and 7, is the total number
of Monte Carlo sweeps.

4 RESULTS
4.1 Sample label configurations

Sample label configurations using the plugin are shown in Fig. 9.
In test runs, labels are initialized (Fig. 9a) such that the bottom left
corner of the label is placed at the center of the anchor point. The re-
sulting configurations are relatively insensitive to any reasonable label
initialization schemes (i.e. labels are close to the anchor point). For
well-separated labels, the most preferred position is the upper right
corner, without any overlaps. This minimum can be easily found us-
ing the implemented simulated annealing scheme (Fig. 9b). When two
anchor points are close together, most likely the two corresponding la-
bels cannot be both in their most preferred position (Fig. 9c). In this
case, one of the labels (Node 43) is in the preferred position while the
other label (Node 16) is rotated and translated slightly in the vertical
direction. In a slightly different example (Fig. 9d), the algorithm finds
a minima where the label for Node 7 is in its preferred position and
the label for Node 5 is rotated to the bottom with respect its anchor.

(a) (b)

‘\lode 22 .Node 32
(©) (d)
Node 16 .Node 7
@Node 43 °
Node 5

Fig. 9. Sample configurations. (a) Initialization: Labels are initialized
such that the bottom left corner of the label is placed at the center of
the anchor point. The final resulting configurations are relatively insen-
sitive to reasonable label initialization schemes (i.e. labels are close to
the anchor point). (b) Global minima for individual, well-separated la-
bels: For well-separated labels, the most preferred position is the upper
right corner, without any overlaps. This minimum can be easily found
using the implemented simulated annealing scheme. (c) Labels close
together: When two anchor points are close together, most likely the two
corresponding labels cannot be both in their most preferred position. In
this case, one of the labels (Node 43) is in the preferred position while
the other label (Node 16) is rotated and translated slightly in the vertical
direction. (d) Labels close together: In this case, the algorithm finds a
minima where label for Node 7 is in its preferred position and the label
for Node 5 is rotated to the bottom with respect its anchor.

4.2 Benchmark results

To further evaluate the effectiveness of the plugin, benchmark sim-
ulations have been performed for different number of labels (N = 25,
50,, 75, 100, 125, 150). They are summarized in Fig. 2. Results are
evaluated based on run times, number of label-label overlaps, num-
ber of label-anchor overlaps, and number of leader line intersections.
These tests were run on an Intel Core i5 2.7 GHz machine with 4 GB
of RAM. For each N (number of labels), 100 independent trials were
performed, each for 1000 Monte Carlo sweeps! The results shown in
Fig. 2 are averaged from the 100 trials. For each N, the final label
configuration of one run was saved and the snapshots are shown in
Fig. 10.

4.2.1 Timing

Overall, the energy function is dominated by O(nz) terms, and so
we expect to see a quadratic dependence on the number of labels. This

10One Monte Carlo sweep means that on average, each label is translated or
rotated once. To obtain the actual number of Monte Carlo steps taken, multiply
the number of sweeps by the number of labels N.

Energy term Description Mathematical form Complexity
Elabelflabel overlap Penalizes label-label overlaps Z{V Z/]\;l Wlabelflabelqubel71111721 0(n2)
[Elabel—anchor overlap penalizes label-anchor overlaps Yy):1}’ wlabel "‘”"h‘”Af?l’E[—anchor 0o(n?)
Edist Penalizes labels far from the corresponding anchor YN W4 g; O(n)
Eintersect Penalizes leader line intersection YN winersect I, O(n)
Eorient Penalizes poorly oriented labels YN weorient 9, O(n)

Table 1. Individual terms in the energy function. The terms in the energy function are based on label placement rules set forth by Imhof and
Yeoli [4, 5, 6]. Each term is multiplied with its own weighting term, which accounts for the relative importance of each term.

is exactly what we observe in the benchmark timings in Fig. 2. For
number of labels less than 75, the algorithm takes on the order of a
second to run. This is the range typically expected for most users
and suitable for most figures. Figures with many more data points are
usually not ideal for labeling. For a figure with more than 75 labels, the
time to complete the simulated annealing procedure begins to be more
noticeable. In the largest case tested (N = 150), it takes on average
4.5 seconds to anneal the labels. This is still a small (even negligible)
fraction of the time it takes to place labels manually.

4.2.2 Label-label overlaps

Label-label overlaps are arguably the worst labeling offense be-
cause it interferes the most with the purpose of label to clarify data
points. In our benchmark tests, we see that below N = 75, there is
on average less than 1 label-label overlap. It is important to note that
most of these overlaps only involve a small portion of two labels, as
opposed to two labels directly on top of each other. The number of
overlaps increase to almost 2 when we increase the number of labels
to N = 100. However, from Fig. 10 (d), we can see that given the space
of the figure, this makes a relatively crowded result. For N > 100, la-
beling is not suggested. This can be seen in Fig. 10 (e) and (f). In
many cases, overlaps can be avoided by allowing the labels to be far
apart from the anchor (decreasing the weight of the distance penalty).
However, visually it is often easier to see the label anchor correspon-
dence with a (partial overlap, short distance) combination than with a
(no overlap, long distance) combination. Therefore the weights were
adjusted accordingly to favor the former configuration.

4.2.3 Leader line intersections

In the energy function, we penalize each leader-line intersection
with an energy of Wiyersecr. From Fig. 2, we see that overall, there
are very few intersections. Below, N = 75, the number of leader line
intersections are essentially negligible. Even in the case of N = 150,
there is on average ~1 intersection, hardly noticeable for such a high
number of labels. The small number of intersections is partly a result
of an energy term that explicitly penalizes intersections. However, it
is also because we have a separate term penalizing long distances be-
tween labels and anchor points. The shorter the leader line, the smaller
is the probability of two lines intersecting.

4.2.4 Label-anchor overlaps

Compared to label-label overlaps, label-anchor overlaps are not as
severe. As long as the labels and anchor points have different color,
such overlaps often do not distract the viewers too much. This ob-
servation was used in adjusting label-anchor penalty weights. How-
ever, it is of course still good practice to avoid such overlaps. From
Fig. 10, we see that compared to label-label overlaps, there are more
label-anchor overlaps for each N. Below N = 50, there is on average
approximately 1 (partial) overlap per configuration. That number in-
creases to slightly more than 4 when N = 75. Past N = 75, the number
of overlaps increases rapidly.

5 USAGE

5.1 Installation

To use the plug-in, first download labeler.js. Then include the plug-
in within the relevant .atml file with:

Labels Time (sec.) L-L overlap Leader intersect. L-A overlap
25 0.13 0.0 0.01 0.15

50 0.45 0.14 0.05 1.25

75 1.10 0.62 0.13 4.35

100 1.84 1.77 0.37 9.88

125 291 5.52 0.57 23.59

150 4.40 17.17 1.01 47.60

Table 2. Benchmark results for various N. Benchmark tests were run
on an Intel Core i5 2.7 GHz machine with 4 GB of RAM. For each N
(number of labels), 100 simulations of simulated annealing with 1000
Monte Carlo sweeps were run and the results were averaged. It is im-
portant to note that most of these overlaps only involve a small portion
of the labels or anchors.

<script src="labeler.]js"></script>

5.2 API

To automatically place labels, users declare a labeler (simulated
annealing) layout, input label and anchor positions, the figure bound-
aries, and the number of Monte Carlo sweeps for simulated annealing.
The general pattern is as follows:
var labels = d3.labeler ()

.label (labArray)

.anchor (ancArray)

.width (w)

.height (h)

.start (nsweeps) ;

The default settings are: w=1, h =1, and nsweeps = 1000. The default
labArray and ancArray are empty arrays. Here we describe each term
in more detail.

d3.labeler ()

Start by declaring a labeling layout, the same as declaring any other
D3 layout.

labeler.label (labArray)
Each label has the following attributes:

e X - the x-coordinate of the label
e y - the y-coordinate of the label
e width - the width of the label

e height - the height of the label
e name - the label text

Note that width and height (which are used to calculate the

overlap areas) can be easily measured using the SVG getBBox ()
method.

labeler.anchor (ancArray)

.. T T LT
N 'E] Node 46 1 @Node 52
Node 13 L Node 48 L]
. Qoget w1 efode 26 oNode 4 ooNode s e 1 Node 50 _Node 20 Node 11 Node 37,
1gNode 11 [|4 ' ® ®Node 21 ¢ oNodels Node 70
R4 lode . Node 17 Node 48 1 odess i 1
1] lode
1 Node 6 Jlode 17 i ode 41 _@Node 20 e olNode 42 Rode 23 1
o ° elNode 22 oNode 29 3 Node 39 Node 47 1
1 . N Node 37 @Node 34 T} Node ggNode 5y oo oNode 67
1 Node 15 X Nodo 30 @gNode 15 10 e © fode 24 Node 73 eNode 26 .
1 Qe X o " @ode 66 oModo 43 JNodo 4iNode 19 .
1 oNode 20 11 ehNodei2 @Node 40 .NodeNgde » i Node 17 @Node 57.N°de 2 eNode 29 '
' L Node 27 eNodel g TNode s 1y e sa oNode 55 Nodeds gNoded g
] [Node 35 ® Node 8 LI ot Node 62 oNode 2 N
] (] | Node 39 Node 36@ Node 49 1 @hode @ gNode 63 '
N ghode 9 . oehode ® gNode2 L4 1 eNode 40 ®Node 220 o Node 71
Qode7 1 Node 11 Node 7 L @Node 1
. 1 ® eNode 43 . oNode 51 dlode 74
| etodes " " Node 8 Node 15 Ngde 6gfede %1 enode 16
de 38 Node 3 1
' oodes L ONO ® FaNode 23 0% " Node 25 ! @nod 4’\:‘13 & Node 65 Node 14 o
1 . % Node 16® ! e “Node oNode 30 @"09°
Node 2 0de 31 oNode 14 Node 18 Node 10 Nodeaz | ngliode 18Node 68 Node 58 Node 45 N 1
' @Node 0 © 11 oNode 47 © ° efiode 8942 1 onoge 1 eNode 10 © C4 Qodeds
1 @Node 4 1 ® @Node 9 ! @ Node 49 Node 9 ®Nodess |\ @
Node 21 @Node 21 1 @Node 25 Node 44 @ Node 1
1 glode 8 ©® nNode sl I n ® g Noded2 dlode 64 |
1 [) N Node “:Node 2 [@Node 61 g\ode 38gNode 34 1
1
TgNode 18 Node 12 eNode 10 ! ° eNode 24 gNode 5 "1 Node s Nodo 28]
oode 19 @Node 14 Noda 23 [N eNode 13 eNode 19 1, Node 50 Nodo 50 @"%° .
© e ®Node 33 L L4 o 1
10T o \ReTegglote T~ “gRods 7o '5:5'2 e Node 2oNode 54 _nodose € oNode 118~ 7y I 7 " Node SONade 57Node 132 gNode 108 Node 57gNods 230 gNode s ~ |
< gNode 59 4 Node 59 ghode 99 1 Node 13361 ONode 34®%ode 59 !
. Node 28Node 50"\09° 52, Node78 Node4 . ode 64 Node 96 Node 31 . N PNode 87 Node 52 e 117 lode
1 @ SNode g ®rode 0 Node 69 11 8% Vghode 1ogNode SggNode 3 Node 6 N99e 700 oo g1 PP SNode 104 | Cnode 14 © @Node 35@"0dgd Node 122 8
ode 14 Q 1067 ONodess ©MNoe 57\ oo 6 Node 11 jode 51@Node 26 Node 44@ Node 82 'Na!seﬂ 00 ONSe 43 Oge ggNﬂﬂEﬂf; @Node 86 @ ;e g0 Node 133 @ @Node 114 i
] lode lode @Node ® (N ® @Node 35 o "Node 1 o0 Ngde 32Node 87@pod0 129 NOde 146 Node 148 Node 70 5
1 d oNode 7, oNode 12y dlode 1@ Node 34Node 105 ! Node 47 ' 8 Node 36 °°° "2°e@iNode 12Node 4 o0
Node 94 @Node 84 Node 91 Node 55 nogo 47® Node 42 @ Node 124 N loge 2" “Node 1121
1 ° oo S 15 gods 20 Nodo37 Node oNode 93 1 Node 147 @ Node 124 _Node 16 gNode 103 Node 335
. .D EOde 1 .Node 71 .Nnde 98 1 I.Node 66 Node 564 Node 89 .Node 121 @Node 48 N |[\iode.42 Node 58 Node &Bche 64 Node S‘Nude 76@Node 116Node 1%7
§ eNoded @Node 86Node 51 @Node 89 1 Node 16 © g ghoe 45 Nodess 3 ' ® © Onode 1 @30S 1% Node 130Node 2sNodd 142 '
Node 16 Node 42 o Ot s Ngge 110 @ ®node 83 oNode 25 gNode 85 oioer | B Node 90 gNodo 137 Node 83 |Noge 454 @ @Node 102 1
roe SNode 66 lode Node55 ! Node 111 Node 104 Node Node 11 L. 006G o8 aNode 14gNode 121 g
' © oNode 49 ©ONode 67 I ® ije {gNode 88 eNode 36 @ gNode 75 Node 120 L Node 13 Node eag@ o es a“Ngge 370 Nod"'q*g o 1
A [Node 38 9 Node g8 Node _Node
1 lode 58 oNode 39 gNode 8 Oghode 95 T Iyyie230 Noge ga®Node 58 Node 52, 0 o ® gNode 101 "y eNode 136 tode 28Node g?{aNoas 63 o8 o6 119]
1 Node 31 @Node 74 I 1 @Node 95 e 39€" eNode 41 o 1 Nod 46 & loda 82 Nodo 95
©® _Node73 ° @lNode 10 e Noue 38" 1 ode 21 Node 4 Node 3980de 4B 1o S0 @M% 126 2600 e sh - 1
L v Node 90 Nodo2p | T@Ode 12 oNode 61 e Bug\o%e 21 gNode 5 otode1s 1 K¢ Node 68 Ot 11098 % e 0 NU° SgNode 100 1
L lode o, Node 92 lode 120
! Rode 19 Node 2 Node 41@ ©N°%e 15 ® Nodess' ' eNode 102 Mot e Node 24 eNode 87 | ” Node 25 Node 143@Node i09Node 11 oNode72 1
1 e Modeld @Node2s ° Node 82 i @Node 7aN0e . 1 Node 24 Node®g eNode 27, 1
Node 99 @ Node 81 Node 20 Y eNogg 38 lode 74Node 73Node 115] @Node 18 lode 9.che 141 ‘@Node 101
1 jode 20 Node 3 Node 36 L} Node 8 Node /1 Node 72Node 77] de 81@Noge 13 N
Node 48, Node 30 @Node 77 Node 6 lode 46, ® L4 lode/109g @ " \ode 2 1 Node 105" . Rodo 134 @Node 17
[Node 47 © ; ° Node 26 (W] Node 62 ® “nNode 17Node] Node 10 Node 46 Node 96 lode M
1 NodS13 PR o . oo CaNode 100 Node 91 QT Nodego g SNodes @O 27y ¥ Node 99 G Piode 55 @MNode 65
e lode 97 Node 93 lode 11 @ ®Node 80 e @ 1@Node 40 Node 91 @ NGde 145, Node 54 '
Nodegs2Node 40 Node 56 Node 96 Node 30Node 32 L4 Node 131
1 Node 23046 70 ¢ [oNode 57 noge 94 Node 97 ©!\ode SO !y glode 718 @noge 135 @Node 31 oo 125N09° Bnode 20]
1 Jlode 88 Node 27'/’,Nade 80 Node s36°%¢ ¥ ®Node 34 1 Node 50 Node SD:Nm 28 @Nodeg1ENode o 11O oNode 83 Node 86 & ©S8Nods 15 .
1 @ode 63 9 ¢ elode3s e @Node 72 Node 24 LT ot @ Node 98 Node 22Node 10 g Node 49 oNode 126 ¢ Qoge 77 Node 83gNode 73 1
lode
1 Node 45 Node 76 gNode 65 v Plodees Ngde 106 @node 78 Qode 7o ®Node 117 1 © gNode 19 @Node 62Node 29 ® eNode :;Nm'j\‘e;27‘ o
1 ‘Nods 652®Node 60 @Node 92 Node 5 gNode 18 1 1% Node 90 @Node 15 ONode 107 0% 112\ 40 Ty oNode 122 1 ghode 110 N"de.w"‘m’e 144 Node 5 Node 3108 01
1 enodt 32 1 lgnoge foNode 7 Node 53 @Node 71 Nodet1o 1 | Node 125 @lode 95¢ Node 85 © SNodo 02 Node 22§

Fig. 10. Snapshots of the final label configuration for various number of labels (N). (a) N =25 (b) N =50 (c) N =75 (d) N =100 (e) N =125

() N = 150.

Each anchor has the following attributes:

e X - the x-coordinate of the anchor
e y - the y-coordinate of the anchor
e 1 - the anchor radius

labeler.width (w)
labeler.height (h)

The width and height are used to set the boundary conditions so that la-
bels do not go outside the width and height of the figure. More specifi-
cally, Monte Carlo moves in which the labels cross the boundaries are

The newly constructed function must take as input an integer idx, an
array of labels labArray, and an array of anchors ancArray. This func-
tion must also return an energy term that should correspond to the
energy of a particular label, namely labArray[idx]. One may wish cal-
culate an energy of interaction for labArray[idx] with all other labels
and anchors.

labeler.alt_schedule (user_defined_schedule)

Similarly, an expert user may wish to include a custom cooling sched-
ule used in the simulated annealing procedure. The default cooling
schedule is linear.

rejected. If they are not specified, both the width and height default to

1.

labeler.start (nsweeps)

schedule = function(currT, initT, nsweeps) {
// insert user-defined schedule here
return updatedT;

Finally, we specify the number of Monte Carlo sweeps for the opti- }

mization and run the simulated annealing procedure. The default for)) .) .

textitnsweeps is 1000. Note that one Monte Carlo sweep means thaton Lhis function takes as input the current simulation temperature currT,
average, each label is translated or rotated once. To obtain the actual the initial temperature inifT, and the total number of sweeps nsweeps
number of Monte Carlo steps taken, multiply the number of sweeps by ~ and returns the updated temperature updatedT. The user defined func-

the number of labels.

tions can be included as follows:

labeler.alt_energy(user_defined_energy) var labels = d3.labeler ()

This function is constructed for expert users. The quality of the con-
figuration is closely related to the energy function. The default en-
ergy function includes general labeling preferences and is suggested
for most users. However, a user may wish to define his or her own

energy function to suit individual preferences.

energy = function (idx, labArray,

var ener = 0;

// insert interaction energies here

return ener;

.label (label_array)
.anchor (anchor_array)
.width (w)

.height (h)

.alt_energy (ener)
.alt_schedule (schedule)

ancArray) { .start (nsweeps) ;

6 DISCUSSION AND CONCLUSION

The intent of this work is to implement a good algorithm for au-
tomatic label placement in D3 and save designers time from manually

labeling graphs. Often, creating a figure takes many iterations of mod-
ifying the size of data points, axis ranges and scales, and the aspect
ratio of the figure. Whenever each of these parameters change, the
position of the labels could change as well and more time is spent by
aligning the labels in accordance with the other changes. All these
considerations are on the mind of the designer. However, if a designer
is constantly worrying about having to shift and re-shift labels due to
changes in the creative process, then in a way the creative process has
been altered.

The main purpose of the figure is to showcase and tell a story us-
ing the data. This is where the bulk of the work should be. The less
complicated and more streamlined we can make this process, the more
time can be given to the presentation of the actual data. While labels
are important, they are still ancillary to the data and should not over-
shadow the data in the creative process. This plug-in allows designers
to focus on the data in the creative process and not worry about label-
ing because labels can be generated quickly and automatically.

7 FUTURE WORK

This plug-in is general purpose in the sense that it can be used to
label any feature-based graphs (i.e. data points). To this end, I have
implemented some of the more important labeling rules set forth by
Imhof and Yeoli in order to appeal to a wide audience of people who
use D3. While these rules prevent the more egregious errors, there
are still many more aesthetic rules or features yet to be implemented.
For example, while penalties for overlaps are included in the energy
function, there is no term corresponding to the spacing between labels,
which may be important for visual aesthetics. In addition, the labels
are horizontally aligned and cannot be tilted. Although this is the case
for the majority of labeling problems, there are graphs where a differ-
ent orientation of the label might be useful (i.e. labeling the different
functional dependence of a time-series graph). Implementing such ad-
ditional features and rules can be an important direction for this work.

Currently, the default energy function supports labeling point-
feature graphs. My hope is that ultimately, the project will have a
variety of (built-in) energy functions in order to support many types
of graphs (pie-chart, bar-graph, time-series). For now, I have imple-
mented methods in which the individual users may insert their own
energy functions in order to suit the particular needs of their graph.

Another important future direction is not in the labeling aspect of
the work, but rather applying the simulated annealing layout for other
problems. The automatic labeling placement plug-in I have created
is essentially a simulated annealing layout with energy terms corre-
sponding to good labeling practices. If swapped out for other energy
terms, this plug-in can be easily adapted for other optimization prob-
lems, such as configurations for graphs. I hope that apart from its la-
beling capabilities, users will also use the simulated annealing frame-
work that I have created for various other problems.

ACKNOWLEDGMENTS

I would like to thank Prof. Maneesh Agrawala and members of the
class for insightful comments and suggestions.

REFERENCES

[1] A.Cook and C. Jones. “A Prolog rule-based system for cartographic name
placement”, Computer Graphics Forum 9. 1990, 109-126.

[2] M. Agrawala and C. Stolte. “Rendering Effective Route Maps: Improving
Usability Through Generalization”, Siggraph 2001. 2001, 241-250.

[3] “Handbook of Graph Drawing and Visualization”, Ed. R. Tamassia. 2013,
CRC Press.

[4] E.Imhof. “Die Anordnung der Namen in der Karte”, International Year-
book of Cartography. 1962, 2:93-129.

[5] E. Imhof. “Positioning names on maps”, The American Cartographer.
1975, 2:128-144.

[6] P. Yoeli. “The logic of automated map lettering”, The Cartographic Jour-
nal. 1972, 9:99-108.

[7]1 S. Shieber, J. Christensen, and J. Marks. “An empirical study of al-
gorithms for point feature label placement”, Transactions on Graphics.
1995, 14(3).

[8]
[9]

[10]

(11]

(12]
[13]
[14]
[15]

[16]
(17]

S. Hirsch. “An Algorithm for Automatic Name Placement Around Point
Data”, Cartography and Geographic Information Science. 1982, 9:5-17.
V. Cerny. “A thermodynamical approach to the travelling salesman prob-
lem: An efficient simulation algorithm”, Journal of Optimization Theory
and Applications. 1985, 45:41-51.

S. Kirkpatrick, C. Gelatt Jr., and M. Vecci. “Optimization by simulated
annealing”, Science. 1983, 220:671-680.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
“Equation of state calculations by fast computing machines”, J. Chem.
Phys. 1953, 21:1087-1092.

H. Guo, M. Zuckermann, R. Harris, M. Grant. “A fast algorithm for sim-
ulated annealing”, Physica Scripta. 1991, 38:40-44.

Y. Nourani and B. Andresen. “A comparison of simulated annealing cool-
ing strategies”, J. Phys. A: Math. Gen. 1998, 31:8373-8385.

I. Vollick, D. Vogel, M. Agrawala, and A. Hertzmann. “Specifying Label
Layout Style by Example”, Proc. UIST 2007, 221-230.

S. Dasgupta, H. Papadimitriou, and V. Vazirani. “Algorithms”, 2006,
McGraw-Hill .

http://bl.ocks.org/MoritzStefaner/1377729.
http://bl.ocks.org/ZJONSSON/1691430.

	Introduction
	Related work
	Label placement rules
	Search space
	Energy function
	Overview of algorithms
	Greedy algorithm
	Gradient descent
	Simulated annealing

	Methods
	Choice of algorithm
	Incorporation within D3
	Energy function
	Label-label and label-feature overlap
	Distance between feature and corresponding label
	Intersection of leader lines
	Label orientation

	Monte Carlo moves
	Annealing schedule

	Results
	Sample label configurations
	Benchmark results
	Timing
	Label-label overlaps
	Leader line intersections
	Label-anchor overlaps

	Usage
	Installation
	API

	Discussion and Conclusion
	Future Work

