Visualization Designs

Maneesh Agrawala

CS 294-10: Visualization
Fall 2013

Last Time: Data and Image Models
The big picture

- task
- data
 - physical type: int, float, etc.
 - abstract type: nominal, ordinal, etc.
- domain
 - metadata
 - semantics
 - conceptual model
- processing algorithms
- image
 - visual channel
 - retinal variables
- mapping
 - visual encoding
 - visual metaphor

Nominal, ordinal and quantitative

N - Nominal (labels)
 - Operations: =, ≠

O - Ordered
 - Operations: =, ≠, <, >, ≤, ≥

Q - Interval (Location of zero arbitrary)
 - Operations: =, ≠, <, >, ≤, ≥, ±
 - Can measure distances or spans

Q - Ratio (zero fixed)
 - Operations: =, ≠, <, >, ≤, ≥, ±, ±
 - Can measure ratios or proportions

S. S. Stevens, On the theory of scales of measurements, 1946
Visual variables

- Position (x 2)
- Size
- Value
- Texture
- Color
- Orientation
- Shape

Note: Bertin does not consider 3D or time
Note: Card and Mackinlay extend the number of vars.

Playfair 1786

Exports and Imports to and from Denmark & Norway from 1700 to 1780.
Playfair 1786

- x-axis: year (Q)
- y-axis: currency (Q)
- color: imports/exports (N, O)

Minard 1869: Napoleon’s march
Single axis composition

+

Mark composition

| y-axis: temperature (Q) + x-axis: time (Q) = temp over time (Q x Q) |

[based on slide from Mackinlay]
Mark composition

- y-axis: longitude (Q)
- x-axis: latitude (Q)
- width: army size (Q)

army position (Q x Q) and army size (Q)

[based on slide from Mackinlay]
Minard 1869: Napoleon’s march

Depicts at least 5 quantitative variables
Any others?

Automated design
Jock Mackinlay’s APT 86
Combinatorics of encodings

Challenge:
Assume 8 visual encodings and n data attributes
Pick the best encoding from the exponential number of possibilities \((n+1)^8\)

Principle of Consistency:
The properties of the image (visual variables) should match the properties of the data

Principle of Importance Ordering:
Encode the most important information in the most effective way

Mackinlay’s expressiveness criteria

Expressiveness
A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.
Cannot express the facts

A one-to-many (1 → N) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position.

Expresses facts not in the data

A length is interpreted as a quantitative value; Length of bar says something untrue about N data.

Fig. 11. Incorrect use of a bar chart for the Nation relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

[Mackinlay, APT, 1986]
Mackinlay’s effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Subject of perception lecture

Mackinlay’s ranking

<table>
<thead>
<tr>
<th>Quantitative</th>
<th>Ordinal</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Position</td>
<td>Position</td>
</tr>
<tr>
<td>Length</td>
<td>Density</td>
<td>Hue</td>
</tr>
<tr>
<td>Angle</td>
<td>Saturation</td>
<td>Texture</td>
</tr>
<tr>
<td>Slope</td>
<td>Hue</td>
<td>Connection</td>
</tr>
<tr>
<td>Area</td>
<td>Texture</td>
<td>Containment</td>
</tr>
<tr>
<td>Volume</td>
<td>Connection</td>
<td>Length</td>
</tr>
<tr>
<td>Density</td>
<td>Containment</td>
<td>Angle</td>
</tr>
<tr>
<td>Saturation</td>
<td>Length</td>
<td>Slope</td>
</tr>
<tr>
<td>Hue</td>
<td>Area</td>
<td>Area</td>
</tr>
<tr>
<td>Texture</td>
<td>Volume</td>
<td>Area</td>
</tr>
<tr>
<td>Connection</td>
<td>Shape</td>
<td>Volume</td>
</tr>
<tr>
<td>Containment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conjectured effectiveness of the encoding
Mackinlay’s design algorithm

- User formally specifies data model and type
- APT searches over design space
 - Tests expressiveness of each visual encoding
 - Generates image for encodings that pass test
 - Tests perceptual effectiveness of resulting image
- Outputs most effective visualization

[Mackinlay, APT, 1986]
Limitations

Does not cover many visualization techniques
- Bertin and others discuss networks, maps, diagrams
- They do not consider 3D, animation, illustration, photography, …

Does not model interaction

Summary

Formal specification
- Data model
- Image model
- Encodings mapping data to image

Choose expressive and effective encodings
- Formal test of expressiveness
- Experimental tests of perceptual effectiveness
Announcements

Auditors, please enroll in the class (1 unit, P/NP)
- Requirements: Come to class and participate (online as well)
- Requirements: Assignment 1

Class participation requirements
- Complete readings before class
- In-class discussion
- Post at least 1 discussion substantive comment/question by 3pm on day of lecture

All, add yourself to participants page on the wiki

Class wiki
http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/
Assignment 2: Exploratory Data Analysis

Use existing software to formulate & answer questions

First steps
- Step 1: Pick a domain
- Step 2: Pose questions
- Step 3: Find data
- Iterate

Create visualizations
- Interact with data
- Question will evolve
- Tableau

Make wiki notebook
- Keep record of all steps you took to answer the questions

Due before class on Sep 30, 2013

Announcements

9/18: Investigative journalist Nate Halverson will describe a data set on real-estate buyers.

Hopes some of you will analyze it for Assignment 2
Assignment 1: Visualization Design

Design Considerations

Title, labels, legend, captions, source!

Expressiveness and Effectiveness
- Avoid unexpressive marks (lines? bars? gradients?)
- Use perceptually effective encodings
- Don’t distract: faint gridlines, pastel highlights/fills
- The “elimination diet” approach – start minimal

Support comparison and pattern perception
- Between elements, to a reference line, or to counts
Design Considerations

Group / sort data by meaningful dimensions

Transform data (e.g., invert, log, normalize)

Are model choices (regression lines) appropriate?

Reduce cognitive overhead

Minimize visual search, minimize ambiguity

Avoid legend lookups if direct labeling works

Avoid color mappings with indiscernible colors

Be consistent! Visual inferences should consistently support data inferences

Design Space of A1 Submissions

Spatial Encoding

Bar charts, Line charts, Area charts

Scatterplots, Maps

Color Encoding

Nominal, Highlights, Never quantitative

Data Transformation

Often raw counts grouped by (county, age, weight, etc.)

Text of last statement in some cases

Labeling

Title, Caption, Axis labels

Annotations, photographs of faces
Executed Texas Offenders since 1982
Broken down by Race / Details shown for County

BLACK
HISPANIC
WHITE

SUBTOTAL: 88
SUBTOTAL: 87
SUBTOTAL: 226