
Creating, Visualizing, and Exploring Knowledge Maps

Colorado Reed
U.C. Berkeley

colorado@berkeley.edu

Figure 1. The knowledge map visualization and exploration system described in this paper reduces the number of visual edges for large knowledge
maps. In addition, it provides a number of interactive components to help users explore and understand these maps. The left figure shows a knowledge
map (layered, Sugiyama-style, directed graph) of machine learning concepts. The large number of crisscrossing edges makes the graph difficult to
visually parse. The top right figure shows the same graph produced by our system. Notice that the node locations are the same, but a large number of
visible edges have been replaced with “wisp edges:” small, dashed protruding lines from the source and target nodes that become full edges when the
user hovers on the wisp or the source/target node. The bottom right figure shows the focused mode that is displayed after clicking on a concept. The
focused mode shows the inlinks and outlinks of the targeted node and the nodes associated with these edges.

ABSTRACT
Knowledge maps are cognitive aids designed to help users ex-
plore a body of knowledge in a nonlinear way. Specifically,
a knowledge map is a graphical representation of knowledge
chunks, e.g. single-digit addition, linked together by directed
edges that express prerequisite relationships. In this paper
we describe a novel knowledge map creation, visualization,
and exploration system. We employ edge reduction and in-
teractive techniques to aid users in exploring large knowledge
maps. Furthermore, we describe a visual knowledge map ed-
itor that allows users to create new knowledge maps, asso-
ciate related content with the map (e.g. textbook references
of video lectures), and make local changes to large preexist-
ing knowledge maps.

INTRODUCTION
A knowledge map is a graphical representation of concepts
that reveals the relationships and dependencies among the

concepts. In this work, a knowledge map is a directed graph
in which the nodes are concepts and the edges specify prereq-
uisite relationships between the concepts, see Figure 1. This
graphical representation is a variant of the concept maps com-
mon in educational psychology, whereby the nodes are con-
cepts and the edges are linking words that create a meaning-
ful statement or proposition when combined with the nodes.
Stated another way: a knowledge map primarily serves as a
reference tool while a concept map serves as a learning tool.
That is, a knowledge map typically has associated content
with each concept, e.g. textbook references or video lecture,
that a student would use to learn the material, while a con-
cept map summarizes a body of knowledge and is oftentimes
created by the student to help learn the material.

In recent years, several online education companies and
schools have created knowledge maps to help students vi-
sualize and navigate their content in a nonlinear way, see

e.g. Khan Academy [3], Duo Lingo [2], and Metacademy[4].
Khan Academy, a nonprofit online educational company with
over six million unique monthly visitors, has a large (700+
node) knowledge map that founder Salman Khan discussed
on p. 52 of [13]:

[The knowledge map] became a core piece of the Khan
Academy software platform. In stressing the connec-
tions among subjects and giving learners a visual picture
of where they’ve been and where they’re going, we hope
to encourage students to follow their own path—to move
actively up, down, and sideways, wherever their imagi-
nations lead.

A problem with knowledge maps, however, is that the large
number of relationships between the concepts produces a
large number of intertwined and crisscrossing edges in the
graph. In turn, it is difficult to interpret the conceptual re-
lationships, see Figure 2 for examples from Khan Academy
and Metacademy. These “hairball” graphs are common in
network visualizations, and indeed, there is a deep field of
research focused on visualizing networks, e.g. see [7]. The
hierarchical placements of the nodes and edges in knowledge
maps express the dependency structure within the body of
knowledge, and for this reason, many network visualization
techniques will not work with knowledge maps as they ob-
scure or break these relationships.

In this work, we create a novel interactive system for creat-
ing, visualizing and exploring knowledge maps. On the cre-
ation side, we constructed a graphical user interface (GUI)
for visually specifying concepts, their relationships, and as-
sociated content. On the visualization and exploration side,
our system uses a layered (Sugiyama) directed graph place-
ment algorithm [17] to initially place the nodes, a topologi-
cal sort to determine an initial set of visible edges (the topo-
logical sort maintains the connectivity of the graph), an edge
length threshold to determine which remaining edges should
be shown, and edge “wisps” to indicate the absence of an
edge. These techniques greatly reduce the number of visible
edges in large knowledge graphs while maintaining the hier-
archical and connectivity structure of the content.

To further accommodate the goals of knowledge map users,
we incorporated several interactive components that aid the
user in locating concepts of interest and understanding their
relationships to other concepts. In particular, our system al-
lows users to step through the dependency structure of a graph
by sequentially visualizing contextual views of the concepts
(the direct dependencies and outlinks). Furthermore, we in-
clude a number of hover and click operations that reveal the
reason for the relationships and associated content present for
a given concept.

RELATED WORK
In this section we discuss three areas of previous research and
development relevant to this paper: online knowledge graph
systems, visualizations of large directed graphs, and tools for
creating knowledge maps.

Online Knowledge Graphs
The knowledge map creation, visualization, and exploration
system described in this paper was designed for Meta-
cademy—an open source platform for collaboratively cre-
ating, refining, and sharing knowledge maps and associated
learning material [4]. Figure 2 (right) shows a Metacademy
knowledge graph: one of the two main components of Meta-
cademy. The other major component is a text-based view that
provides the user with the following information for each con-
cept: a description of the concept, goals for the learner, the
prerequisites of the concept, learning resources for the con-
cept, and related (non-dependency) concepts. Metacademy is
typically used as a targeted learning resource, whereby a user
searches for a particular concept and is then presented with
a knowledge map with that concept as the sole leaf—most
graphs have 5-50 nodes and less than 100 edges.

As mentioned in the introduction, Khan Academy [3]—a free
video lecture and exercise repository—also provides a knowl-
edge map of their material. Rather than showing target-based
components of the graph, Khan Academy shows users their
entire 700+ node knowledge map. This knowledge map is
much larger than any of Metacademy’s knowledge maps, but
the techniques discussed in this work are applicable to their
graph, and we will format their content for our system in fu-
ture work.

Visualization and Exploration of Directed Graphs
Our knowledge map visualization and exploration system
draws on a number contributions from the graph visualization
community. In particular, the authors of [18] developed an in-
teractive visualization system for large networks, e.g. three
million nodes. The authors focused on providing context-
specific visualizations of large directed graphs and stated that:

Although providing a structural overview of the graph
is a laudable goal, there are many cases where the user
is simply not interested in a global view of the whole
graph, but wants to solve a particular concrete task on
the graph instead.

Rather than show all direct inlinks and outlinks as is done
in several related systems [5, 6], the authors devised a de-
gree of interest (DOI) term for each node that they use to
determine which subset of contextual nodes to show the user.
Since individual nodes in knowledge maps have a relatively
small degree, it is typically possible to visualize the full
context of each node rather than a subset, and we do not
use the DOI technique in this work. The authors use wisp
edges—truncated inlinks/outlinks to a node—to indicate the
presence of an edge without cluttering the visualization with
long, crisscrossing edges. We incorporate this technique into
our visualization (see the next section).

Figure 2. The left figure shows a section of the Khan Academy knowledge map; the right figure shows a Metacademy knowledge map.

There are a number of software packages and algorithms for
visualizing (large) directed graphs that inspired our system:

• the dot placement algorithm, described in [12], is the
underlying placement algorithm for the popular graphviz
C++ graph visualization software. The dot algorithm is
used in the dagre JavaScript graph placement library, which
is used in this work (see the next item).

• dagre [1], a JavaScript library for directed graph placement
is used to generate node and edge placements in our knowl-
edge map system.

• Dynasty [11], a system for browsing large directed graphs
where only a small portion of the graph is visible at any
given time. Dynasty inspired the “focused mode” aspect
of our system where a concept and its dependencies and
outlinks are visible at a given time.

• the transition animations in Open Graph Drawing frame-
work [10], a large C++ library of algorithms for graph
drawing, inspired the transition animations, sequence, and
timing used in this work.

Furthermore, Misue et al.’s mental map preservation proper-
ties for directed graphs [15] motivated our use of visualization
modes rather than dynamic directed graphs.

Finally, many directed graph visualization systems transform
the data for visualization. For instance, hive plots [14] pro-
duce a linear layout for grouping nodes by type and then ar-
ranges the nodes along a radial axis. Arranging knowledge
map concepts along a radial axis does not work well for a vi-
sualization as the concepts commonly have relationships that
span multiple levels, and as a result, the radial network be-
comes polluted with edges that span most of the circumfer-
ence. Strictly hiding these types of dependencies masks the
prerequisite complexity for various concepts and could de-
ceive the user.

Knowledge Map Creation
As of the time of this writing, the author currently does not
know of any tools that are explicitly used for creating knowl-
edge maps as defined in this paper. Both Khan Academy
and Metacademy use text-based systems, e.g. html forms,
to specify the relationships in the graph. However, there is a
large number of tools for creating similar structures such as

diagrams, mind maps, and concept maps. We briefly discuss
these tools and their relevance to our system.

Cmap tools [9] is a Java-based GUI for creating concept
maps: directed graphs where the nodes are concepts and the
edges are linking words so that tracing through a path is akin
to reading a sentence. The Cmap tools GUI inspired our edi-
tor as it has simple drag and click operations to construct the
graph. The Cmap tool editor, however, does not have asso-
ciated content with the graph and is not browser-based. Fur-
thermore, the Cmap tools editor requires the user to manually
place the nodes and edges. Our editor operates in a similar
fashion, but users have the ability to algorithmically arrange
the nodes and edges using the dagre javascript library. Fi-
nally, our editor is browser-based while Cmap tools is a Java
applet.

There are countless diagramming tools such as gliffy1,
draw.io2, and dia 3. Many of these of tools are polished, in-
tuitive, and downright beautiful diagramming tools, but they
are more general purpose than what is needed for knowledge
map creation. Letting users choose the color and shape of the
nodes, the thickness of the edges, etc, detracts from the main
purpose of specifying the concept relationships and providing
associated content.

METHODOLOGY
In this section we describe the visualization and interaction
methods employed by our knowledge map system. In par-
ticular, our system builds upon the Metacademy knowledge
map system, and we have recently acquired the data for Khan
Academy’s knowledge map and plan to extend our system for
this data in the near future.

Knowledge Map Creation and Exploration
From an informal usability study conducted with seven U.C.
Berkeley students using the think-aloud protocol[16] and the
Metacademy knowledge map system, we identified the fol-
lowing common objectives the students had when interacting
with the knowledge map:4

1http://www.gliffy.com/index-g.php
2http://www.draw.io
3http://sourceforge.net/projects/dia-installer/
4Specifically, we observed the students interacting with relatively
large (30-50 nodes) and small (circa 10 nodes) knowledge maps

http://www.gliffy.com/index-g.php
http://www.draw.io
http://sourceforge.net/projects/dia-installer/

1. visualize the overall complexity of the targeted concept,
i.e. the depth and breadth of the graph and the number of
edges and nodes

2. locate specific concepts within the knowledge map

3. identify the prerequisites and outlinks for a concept, the
prerequisites of its prerequisites, outlinks of its outlinks,
etc

4. focus on a particular concept

5. explore related concepts not shown on the current graph
(inclusion of new data)

Metacademy’s primary form of interaction is allowing users
to mark concepts they have learned and subsequently remove
them from the graph. When removing the concepts, the Meta-
cademy system naively recalculates the graph layout with-
out taking into account the previous layout. The system then
instantaneously flashes to the new knowledge graph without
showing the user the corresponding transitions, see Figure 3.
This dynamic form of interaction does not directly address
any of the objectives expressed by the students in our usabil-
ity test. Furthermore, according to Misue et al.’s theory of
mental map preservation for dynamic directed graphs [15],
this transition destroys the user’s mental map of the system as
it violates the following three mental-map-preservation prop-
erties:

1. orthogonal ordering: maintaining the relative directions
between the nodes (these updates can shift the relative di-
rections see e.g. the “random variables” and “expectation
and variance” nodes in Figure 3)

2. proximity model: maintaining the relative distance of the
nodes (these updates can change the relative distance of the
nodes, see e.g. the “random variables” and “expectation
and variance” nodes in Figure 3)

3. topology model: graphical objects within a relative region
should stay within that region (these updates can change
the regional placement of nodes: this is not present in the
supplied example, but it tends to occur with larger graphs).

While letting users remove nodes and edges associated with
learned concepts helps reduce the number of objects in the
graph, this form of interaction does not address the identified
objectives of the users and comes at the cost of nullifying the
user’s previous mental map. From these observations, we did
not include this functionality within our system.

To address the visualization and exploration objectives above,
we created two modes within our system: (1) an overview
mode in which the entire graph is shown and (2) a focused
mode in which a particular concept is shown along with
its immediate dependencies and outlinks. The goal of the
overview mode is to allow users to visualize the overall com-
plexity of the targeted concept as well as quickly trace the

and associated content for 30-60 minutes while verbalizing their
thoughts. These maps showed the full prerequisite structure for a
given concept in machine learning or probabilistic artificial intelli-
gence.

paths of various concepts (objectives 1 and 3), as well as
quickly find specific concepts within the knowledge map and
explore related concepts by loading them into the current
graph (objectives 2 and 5). The focused mode, inspired by
the focused graph view from [11], address objective 4. In
the following paragraphs we describe these modes in greater
detail.

Both Metacademy and Khan Academy knowledge maps have
a large number of long, crisscrossing edges that make it dif-
ficult to trace the paths within the knowledge map. We ad-
dressed this problem in our system by employing the follow-
ing algorithm to reduce the number of visible long, crisscross-
ing edges in our graph:

1. remove all transitive edges from the graph

2. compute the graph layout using dagre

3. set visible-outlinks← ∅

4. for each node n in the graph:
set visible-outlinks← visible-outlinks
∪ {outlinks(n) with path length < L}
∪ shortest-outlink(n)

5. for all edges e not in visible-outlinks: display an edge wisp
protruding from the source and target of e

This algorithm is used to help accurately convey the relation-
ships between the concepts while reducing the edge satura-
tion within the graph. The motivating philosophy behind this
technique is to show users edges when they are interested in
seeing them, while still providing enough edges to maintain
the proper structure of the graph.

In step 1, we remove the transitive edges in the graph because
they do not affect the relative prerequisite structure of the
graph. That is, if we have edges (A,B), (B,C), and (A,C), then
removing (A,C) from the graph will not affect the A,B,C or-
dering, and from a pedagogical perspective, it is a redundant
edge. In step 2 we compute the edge and node placements us-
ing dagre, though any graph placement algorithm can be used
during this step.

In step 4 we remove all edges exceeding a length threshold
L while ensuring that each node has at least one outlink (the
shortest outlink). By including the shortest outlink for each
node, we maintain the visual connectivity of the graph after
hiding other long edges. Naively truncating all edges could
induce artificially separated clusters of concepts that would be
determined by the graph placement algorithm rather than the
content. We note that with a small enough threshold L, each
node would have one outlink and the graph would become a
tree. Therefore, if we simply did not include the non-visible
edges in the graph placement algorithm, it would be possible
to obtain a tree layout with zero edge crossings. This tree lay-
out, however, could visually invalidate the relative prerequi-
site structure of the graph. Using the previous example with
nodes A, B, and C, we could have a tree with visible edges
(B,C) and (A,C) and invisible edge (B,C), which would result
in visually placing nodes A and B on the same level.

Figure 3. One of Metacademy’s primary forms of interaction is allowing users to remove concepts they know: (left) the original graph, (middle) the
dimmed node is marked as known, (right) the node is removed from the graph. In removing the node, the Metacademy system naively redetermines
the location of the edges and nodes without taking into account their previous locations. In the text, we argue that this form of interaction nullifies the
user’s mental map, and as a result, we have not included this feature in our system.

The edge wisps from step 4 give a simple visible indication of
the number of prerequisites and outlinks for a given concept
and are used in the interactive components discussed below.
Figure 4 shows a medium-sized Metacademy knowledge map
of 39 nodes rendered directly from dagre (74 visible edges
with 61 visible edge crossings) and the same knowledge map
obtained using the above algorithm (38 visible edges with 0
visible edge crossings).

We employ the following interactive tools and techniques to
help the user explore and understand the knowledge map gen-
erated using the visible-edge-reduction-algorithm:

• hovering over nodes highlights the inlinks/outlinks from
that node as well as the source (target) of the inlink (out-
link) and shows a set of clickable icons that the user can
use to e.g. show the content associated with the node

• clicking on a node triggers a series of animations that tran-
sitions to the focused mode for that node (see below)

• clicking on an edge shows a pop-up justification for the
edge

• a contractible side menu gives users the ability to search
for a concept in the graph

The “focused mode” shows the user a selected concept as
well its dependencies and outlinks. We use a series of ani-
mations to contract and expand the graph when a user enters
the focused mode: the node is highlighted, then centered on
the screen, then the dependencies and outlinks are translated
so that they are adjacent to the focused node while the other
nodes and edges fade out. This sequence is based on similar
transitions in the Open Graph Drawing framework [10]. The
animations and interactive tools were implemented using the
d3 JavaScript library [8].

In the focused mode, a small information box appears at
the bottom of the screen and indicates the number of hid-
den nodes and edges. The entire animation sequence takes
slightly longer than one second. Clicking on an adjacent node
within focused mode moves that node into focus, while click-
ing on the focused node runs the sequence of animations in

reverse and returns the user to the full graph. Figure 5 shows
a visualization of focused mode and the associated transition.

Knowledge Map Creation
In this subsection we describe our visual knowledge map cre-
ator. While this tool is independent of a particular platform,
its current implementation is aligned for the Metacademy sys-
tem. We designed this visual editor using the d3 JavaScript
library [8] and only included features that benefitted the fol-
lowing operations: add/remove concepts, add/remove rela-
tionships between concepts (edges), add/remove associated
content, and preview the knowledge map using the techniques
discussed in the previous subsection.

Figure 6 shows the knowledge map creator. The main view
consists of a large graph editing surface and a small toolbox.
The user can perform the following editing operations:

• add node: shift + click on the editing surface

• remove node: click on a node and press delete or backspace

• move node: click + drag node

• change node title: shift + click on the node

• edit content associated with node: click on the small circle
that appears when hovering the node

• expand/contract a node’s dependencies (outlinks): click the
plus/minus icon at the top (bottom) of the node

• add directed edge: shift + click on the source node and drag
to the target node

• remove edge: click on a edge and press delete or backspace

• scale graph: scroll

• translate graph: click + drag on the editing surface

In addition, the toolbox shown in Figure 7 provides the user
with the ability to optimize the graph location using dagre,
clear all nodes and edges from the graph, preview the graph
using the knowledge map exploration system described in this

Figure 4. The left figure shows the knowledge map obtained directly using the dagre output; the right figure shows the knowledge map obtained using
our visible-edge-reduction algorithm.

Figure 5. The left figure shows the highlighted edges and nodes when hovering over a specific node. The right figure shows the “focused mode” that
occurs after clicking the node. Clicking the focused node in the focused mode returns to the full-graph display, while clicking the adjacent nodes places
the focus on them.

paper, and download/upload a graph to/from a JSON5 repre-
sentation.

The search bar at the bottom of the toolbox gives users the
ability to add preexisting concepts to graph. When a user adds
a preexisting concept to the graph, the inlinks/outlinks of that
node are contracted by default so that e.g. 20-50 prerequi-
site nodes are not immediately placed into the graph. When
expanding/contracting nodes, a small information box at the
bottom of the screen displays the number of hidden nodes and
edges.

Figure 6. This figure displays the graph editor described in the text.

Figure 7. This figure shows the annotated toolbox for the graph editor.

When hovering over a node, a small circle appears on the
outer radius of the node. If the user clicks the small circle then
a content editor overlays the graphs with roughly a 0.8 alpha
value, Figure 8. This content editor lets the user provide a
summary for the concept, as well as provide links to learning
resources and justifications for the prerequisites. Presently,
this form is hard-coded html, but in the near future, we would
like to create a simple interface for specifying the types data
associated with the knowledge map. In this way, we hope to
make this system usable outside of Metacademy.

DISCUSSION
The Metacademy system was designed so that individuals in
variegated disciplines could both contribute content and ex-
plore preexisting content. Until now, this process involved

5http://www.json.org

Figure 8. This figure shows the content-editing form that overlays the
knowledge map creator. This form allows users to associate content with
the graph.

exploring large static graphs and editing text files. The con-
tributions from this paper will help users interactively explore
the knowledge maps and associated content. Furthermore,
users can now contribute content via a visual knowledge map
creator.

From watching users interact with our system during a
research-poster session, we found that several users had had
comments along the line of “visualizing the edges isn’t nec-
essary until you’ve chosen a reference node and you want to
see it’s relationships.” While this certainly is not a formal us-
ability study, we found it encouraging the users organically
agreed with one of the driving forces for this work. We may
pursue a formal usability study in the future.

This work and its inevitable progressions and exten-
sions can be found at http://www.metacademy.org.
The exact system described in this paper can be
found at http://github.com/metacademy/metacademy|
application/tree/graph|editor.

FUTURE WORK
The Khan Academy knowledge map inspired this paper, and
in the coming weeks, we plan to make our system compatible
with their data. As mentioned in the previous section, a for-
mal user study would help validate or nullify our conjecture
that our knowledge map exploration and creation tools help
users efficiently explore and create educational material.

Beyond the realm of visualization, we would like to explore
how users interact with these graphs in an online educational
setting. Some interesting questions to answer include: what
advantages and disadvantages does a knowledge map system
have over traditional content presentations such as a textbook
or wiki page, do users that create knowledge maps perform
better in the class (not a concept map, as has been studied
countless times in educational psychology), and to what ex-
tent are large knowledge maps useful, i.e. how big is too big?

ACKNOWLEDGEMENTS
Colorado Reed would like to thank Kristin Stephens for her
fantastic feedback throughout this project and Dan Allan and
Zach MacHardy for testing early versions of the knowledge
map creator.

http://www.json.org
http://www.metacademy.org
http://github.com/metacademy/metacademy|application/tree/graph|editor
http://github.com/metacademy/metacademy|application/tree/graph|editor

REFERENCES
1. dagre javascript library.

https://github.com/cpettitt/dagre. Accessed:
2013-12-01.

2. Duolingo. http://www.duolingo.com. Accessed:
2013-12-01.

3. Khan academy. http://www.khanacademy.org.
Accessed: 2013-12-01.

4. Metacademy. http://www.metacademy.org. Accessed:
2013-12-01.

5. Palantir. http://www.palantirtech.com. Accessed:
2013-12-01.

6. Touchgraph. http://www.touchgraph.com/navigator.
Accessed: 2013-12-01.

7. Batagelj, V., and Mrvar, A. Pajekanalysis and
visualization of large networks. Springer, 2004.

8. Bostock, M., Ogievetsky, V., and Heer, J. D3:
Data-driven documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis) (2011).

9. Cañas, A. J., Hill, G., Carff, R., Suri, N., Lott, J.,
Eskridge, T., Gómez, G., Arroyo, M., and Carvajal, R.
Cmaptools: A knowledge modeling and sharing
environment. In Concept maps: Theory, methodology,
technology. Proceedings of the first international
conference on concept mapping, vol. 1 (2004), 125–133.

10. Chimani, M., and Gutwenger, C. The open graph
drawing framework (ogdf). http://www.ogdf.net/.

11. Eisner, J., Kornbluh, M., Woodhull, G., Buse, R.,
Huang, S., Michael, C., and Shafer, G. Visual navigation

through large directed graphs and hypergraphs. In
Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’06), Poster/Demo Session
(Baltimore, Oct. 2006), 116–117.

12. Gansner, E. R., Koutsofios, E., North, S. C., and Vo,
K.-P. A technique for drawing directed graphs. Software
Engineering, IEEE Transactions on 19, 3 (1993),
214–230.

13. Khan, S. The one world schoolhouse: Education
reimagined. Hachette Digital, Inc., 2012.

14. Krzywinski, M., Birol, I., Jones, S. J., and Marra, M. A.
Hive plotsrational approach to visualizing networks.
Briefings in Bioinformatics 13, 5 (2012), 627–644.

15. Misue, K., Eades, P., Lai, W., and Sugiyama, K. Layout
adjustment and the mental map. Journal of visual
languages and computing 6, 2 (1995), 183–210.

16. Nielsen, J. Evaluating the thinking-aloud technique for
use by computer scientists. In Advances in
human-computer interaction (vol. 3), Ablex Publishing
Corp. (1993), 69–82.

17. Sugiyama, K., Tagawa, S., and Toda, M. Methods for
visual understanding of hierarchical system structures.
Systems, Man and Cybernetics, IEEE Transactions on
11, 2 (1981), 109–125.

18. Van Ham, F., and Perer, A. Search, show context,
expand on demand: Supporting large graph exploration
with degree-of-interest. Visualization and Computer
Graphics, IEEE Transactions on 15, 6 (2009), 953–960.

https://github.com/cpettitt/dagre
http://www.duolingo.com
http://www.khanacademy.org
http://www.metacademy.org
http://www.palantirtech.com
http://www.touchgraph.com/navigator
http://www.ogdf.net/

	Introduction
	Related Work
	Online Knowledge Graphs
	Visualization and Exploration of Directed Graphs
	Knowledge Map Creation

	Methodology
	Knowledge Map Creation and Exploration
	Knowledge Map Creation

	Discussion
	Future Work
	Acknowledgements
	REFERENCES

