

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row>

Approaches

Direct rule-based methods Constraint satisfaction Optimization Example-based methods

Adaptive Grid~Based Document Layout

CHUCK JACOBS¹ WILMOT LI² EVAN SCHRIER² DAVID BARGERON¹ DAVID SALESIN^{1,2}

¹MICROSOFT RESEARCH ²UNIVERSITY OF WASHINGTON

Pros and cons

Pros

- Often run fast (at least one-way constraints)
- Constraint solving systems are available online
- Can be easier to specify relative layout constraints than to code direct layout algorithm

Cons

- Easy to over-constrain the problem
- Constraint solving systems can only solve some types of layout problems
- Difficult to encode desired layout in terms of mathematical constraints

Layout as optimization

Scene description

- **Geometry:** polygons, bounding boxes, lines, points, etc.
- **Layout parameters:** position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify ...

- Initialize/Perturb functions: Form a layout
- **Penalty function:** Evaluate quality of layout
- .. and find layout that minimizes penalty

Optimization algorithms

There are lots of them:

line search, Newton' s method, A*, tabu, gradient descent, conjugate gradient, linear programming, quadratic programming, simulated annealing, ...

Differences

- Speed
- Memory
- Properties of the solution
- Requirements

Simulated annealing

currL ← Initialize() while(! termination condition)	Form initial layout
<i>newL</i> ← Perturb(<i>currL</i>)	Perturb to form new layout
<i>currE</i> ← Penalty(<i>currL</i>) <i>newE</i> ← Penalty(<i>newL</i>)	Evaluate quality of layouts
if((newE < currE) or	Always accept lower penalty
(rand[0,1) < e ⁻ then currL ← newL Decrease(<i>T</i>)	Small probability of accepting higher penalty

Perturb: Efficiently cover layout design space **Penalty:** Describes desirable/undesirable layout features

Pros and cons

Pros

Much more flexible than linear constraint solving systems

Cons

- Can be relatively slow to converge
- Need to set penalty function parameters (weights)
- Difficult to encode desired layout in terms of mathematical penalty functions

Pros and cons

Pros

Often much easier to specify desired layout via examples

Cons

- Usually requires underlying model
- Model will constrain types of layouts possible
- Large design spaces likely to require lots of examples to learn parameters well

Assignments 2 and 3

Grades have been posted to bspace

If you used real estate data for A2 please let Jennifer Baires know what you did bairesjen@gmail.com

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- **8**-12 page paper in format of conference paper submission
- 1 or 2 design discussion presentations

Schedule

- Project proposal: 10/28
- Project presentation: 11/11-11/13
- Final paper and presentation: 12/2-12/6

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Road Layout Constraints

Length

Ensure all roads visible Maintain ordering by length

Orientation Maintain original orientation

Topological errors Prevent false Prevent missing

Ensure separation

Overall route shape

Maintain endpoint direction Maintain endpoint distance $((L_{min} - I(r_i)) / L_{min})^2 * W_{small}$ $W_{shuffle}$

 $|\alpha_{curr}(r_i) - \alpha_{orig}(r_i)| * W_{orient}$

$$\begin{split} \min(\mathbf{d}_{\mathsf{origin}}\,,\,\mathbf{d}_{\mathsf{dest}})*\,\mathbf{W}_{\mathsf{false}} \\ & \mathsf{d}*\,\mathbf{W}_{\mathsf{missing}} \\ & \min(\mathbf{d}_{\mathsf{ext}}\,,\,\mathsf{E})*\,\mathbf{W}_{\mathsf{ext}} \end{split}$$

$$\begin{split} & |\alpha_{\text{curr}}(\textbf{v}) - \alpha_{\text{orig}}(\textbf{v})| * W_{\text{enddir}} \\ & |d_{\text{curr}}(\textbf{v}) - d_{\text{orig}}(\textbf{v})| * W_{\text{enddist}} \end{split}$$

Balancing the Constraints

Prioritize scores by importance

- 1. Prevent topological errors
- 2. Ensure all roads visible
- 3. Maintain original orientation
- 4. Maintain ordering by length
- 5. Maintain overall route shape

Priorities set based on usability tests

- Users given maps containing errors
- Rated which errors most confusing

System Performance		
7727 routes (sampled over 1 day at MapBlast!)		
Median distance	52.5 miles	
Median number turning points	13	
Median computation time	0.7 sec	
■Short roads	5.4 %	
False intersections	0.3 %	
Missing intersections	0.2 %	
■Label-label overlap	0.5 %	
Label-road overlap	11.7 %	

