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Visualizing Eigenstates of Nanotransistors with
Arbitrary Shape

Douglas J. Mason

I. INTRODUCTION
Developing a thorough understanding of physical data

from simulated systems have proven a difficult task. In
the field of quantum chemistry large software packages
have been devloped, for instance the highly-sophisticated
Visual Molecular Dynamics (VMD) software which is freely
available[William Humphrey and Schulten(1996)]. These
packages are ideal for three-dimensional visualization of
molecular orbitals, but have a substantial learning curve
to use and are not pedagogically aimed. Regardless, the
value of such visualization to understanding the results
of a quantum simulation that can quickly respond to user
input has been thoroughly studied and validated. The reader
is encouraged to examine a summary of such findings
in[Baker(1972)], [Small(1983)], [Kim K. Baldridge(1995)],
[Hsin-Kai Wu(2004)].
The development of this project is highly personal, and

as such does not fall easily under general categories of
visualization research. Its aim is to facilitate visualizing the
results of a research project ongoing at the Molecular Foundry
at Lawrence Berkeley National Labs, serving to validate the
algorithm underlying the project, and to allow the user to easily
explore properties of finite two-dimensional systems. We call
the final product the Eigenstate Explorer. As such, this paper
will begin by explaining the theory underlying the data being
examined. I will then describe the user-interface designed
interact with the underlying data, and conclude with remarks
on the algorithms used to create the visualizations apart from
the algorithms used to derived the data being visualized.

II. PROJECT MOTIVATION AND BACKGROUND
Recent experiments conducted on single layers of carbon

known as graphene have grown increasingly complex with
regards to geometry. They have stepped outside the realm
of linear, rectangular MOSFET-type devices and into fully
two-dimensional geometries with multiple leads at arbitrary
angles (see, for instance, [Y. Zhang and Kim(2006)],
[B. Huard and Goldhaber-Gordon(2007)],
[Y.-W. Tan and Kim(2007)]). Challenges to graphene
fabrication give even linear devices substantial two-
dimensional character, largely due to unpredictable defects
in the etching process (see, for instance, the irregular
geometries depicted in [B. Ozyilmax and Kim(2007)],
[F. Sols and Neto(2007)]). The current gap between theory
and experiment in the literature can be attributed to the lack
of efficient tools to handle such arbitrary devices at the nano-
and meso-scopic scales. This project aims to provide one

such tool and demonstrate its use on proposed and potentially
useful hexagonal junctions.
The underlying theory behind this project is described as

single-electron coherent transport. The theory assumes that
you have a finite system, in this case a small two-dimensional
sheet of graphite known as graphene, which is connected to
two or more infinite leads. The single electron enters through
the input lead, scatters off the eigenvalues (or eigenstates)
of the system, and emerges from the output lead. What
we observe as experimentalists are the consequences of this
scattering. First, we can observe the charge density of the
device with a scanning tunneling microscope. This is described
by the local density of states (LDOS) which describes the
likelihood of the single electron existing at a point in the
device when it enters the system with a particular energy.
Second, we can observe the conductance across the device
which is described by the electron transmission coefficient.
While these theories are constructed using a single electron
which interacts without ballistic scattering, the behavior of the
single electron is assumed to be true of all electrons that enter
the system. Thus they predict bulk properties of electricity for
small devices where electron interaction is not an important
factor.
The key ingredient to all calculations is the Hamiltonian

which completely describes the system. We invert the Hamil-
tonian to obtain the Green’s function matrix, whose diagonal
and boundary blocks are used to calculate the LDOS and
electronic transmission respectively. The algorithm employed
here utilizes features of the Hamiltonian to obtain these
results efficiently and automatically, and is currently being
submitted for publication. For the purposes of this paper, we
will withhold detailed information about the algorithm and
instead provide a summary of how the observable quantities
are calculated.

A. LDOS and Transmission
The LDOS and transmission matrix are derived from the

Green’s function matrix defined by

GD(E) = ((E − iη) · ID − HD)−1

Here HD is the Hamiltonian chosen to represent the system
and E − iη is the Fermi energy subtracting a small imaginary
parameter designed to avoid poles in the complex plane. The
quantity ID is the identity matrix with the size of HD . In
the tight-binding approximation, the diagonal entries of HD

will give the onsite energy of each atomic orbital and the
off-diagonal elements will give the hopping potential between
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Figure 1. Eigenstates of a hexagonal graphene device

neighboring orbitals. Using this formalism, we can identify
the density operator as

ρ̂ (E) =
1

π
Im [GD (E)]

which has the same dimensionality as the Green’s function.
Similarly, we can write the local density of states as

LDOS(E, x) = ρ (E, x)

where we have dropped the hat-operational notation since now
the quantity in question is a scalar. In words, if we have
discretized space into a finite set of N points at positions x(n)
we can write the density function of an orbital at point x(n) as
the diagonal of the density operator at entry (n, n). Similarly,
we can write the total density of states, written simply as DOS,
as the spatial sum of the LDOS, or in equations

DOS (E) = Traceρ̂ (E)

The transmission matrix is calculated not from entries
of G along the diagonal but from the block off-diagonal
elements communicating information from the input to the
output boundaries, which we define as GIn→Out. We assume
that we have obtained the self-energies for all boundaries, and
define gamma matrices from the self-energy of the input and
output boundaries such that ΓIn(Out) = 2Im [ΣIn(Out)]. We apply
the Lippman-Schwinger equation to compute the transmission
matrix

T̂ (E) = ΓIn(E)G∗

In→Out(E)ΓOut(E)GIn→Out(E)

and the transmission coefficient T (E) = TraceT̂ (E)

B. Eigenstates
The key concept to this project derives from a feature of all

Hermitian matrices like the Hamiltonian to be diagonalized
into eigenstates and eigenenergies using the formula

H = QT DQ

where the Q matrix provides the eigenstates

Q = [ψ1, ψ2, . . . ]

and the D matrix provides the eigenenergies

D =















E1

E2

. . .

En















Figure 2. Different representations of an eigenstate in a hexagonal device
with discrete rotational symmetry at θ = nπ/3. The above plots are given
for unitary transformations at θ = 0, π/3 + ε, 2π/3. The system appears
rotated by an angle of π/3 between each representation. While the second
representation appears rotated compared to the first, since the the theta
parameter is not precisely a symmetry rotation, the rotation analogy breaks
down. In the continuum limit where the rotational symmetry occurs for any
theta, these in-between states are always full rotations.

By decomposing the Hamiltonian into its eigenstates, that is,
the columns of the Q matrix, we can explore which energies
the electrons are scattering off to produce the results that in-
terest us. The above images plot the density ρi (x) = |ψi(x)|2

for three eigenstates each of which is associated with an
eigenenergy. These states are important to understand since
they illuminate how the geometry of the device enhances or
disrupts electron transmission.

C. Eigensubspaces
The key quantity to quantum scattering are not the eigen-

states by are the eigenenergies. For most Hamiltonians, the two
are indistinguishable, as each eigenstate ψi is associated with
a unique eigenenergy Ei. When a system exhibits symmetry,
however, there are linearly dependent vectors in the Hamilto-
nian which break this one-to-one relationship. In these cases,
an eigenenergy can be associated with multiple eigenstates
with different electron densities in the device. In the case of
the two-dimensional systems explored in this study, rotational
or reflection symmetry will cause eigenenergies to connect
to either one or two eigenstates. In the latter case, a true
visualization of the electron density requires us to consider all
possible unitary transformations between the two eigenstates.
Using the rotational unitary transformation, which relies on
only one parameter we conveniently call θ, we write

ψθ (x) = ψ1 cos θ + ψ2 sin θ

For this eigenenergy, all possible ψθ(x) where θ ∈ [0, 2π]
are equally valid representations of the scattering state. For a
system which has discrete rotational symmetry, the meaning
of θ can be interpreted as an actual rotation of the eigenstate.
However, it only takes this meaning at the rotational angle that
produces the symmetry, at angles in-between the symmetry
angles it is instead a mixture of the two states with no obvious
analogy.

D. Partial Density of States (PDOS)
Since the basis of eigenstates is as valid as a spatial basis,

we can decompose the DOS into a sum of partial densities of
states (PDOS) from each eigenstate as

DOS (E) =
N

∑

n=1

PDOS (E, n)
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Figure 3. DOS (green), PDOS (blue), for eigenstate at eigenenergy (red).
The PDOS is a function always smaller than the DOS which can take on
different shapes for different eigenstates

where
PDOS (E, n) = ψ∗

nρ̂(E)ψn

and where the asterisk demarks the conjugate transpose. In the-
oretical chemistry, the PDOS of the highest-energy occupied
molecular orbital (HOMO) and the lowest-energy unoccupied
molecular orbital are crucial quantities that have acquired full
subdisciplines for their study.

E. Eigenenergy Decomposition
The density operator for a device not connected to leads is

described by a set of delta-functions

ρ̂closed (E) =
N

∑

i=1

ψiψ
∗

i δ (E − Ei)

and thus

DOSclosed(E) =
N

∑

i=1

δ (E − Ei)

since |ψi|2 is normalized to one over all space. In the extreme
example of a system with one degree of freedom, say a single
atom with an orbital of energy E0 we can write this as

ρ̂0 (E) = ψ0ψ
∗

0δ(E − E0)

Attaching a lead to this atom, but say putting it in an infinite
line of atoms broadens the density operator as a Lorentzian
defined by

ρ̂0,open(E) = ψ0ψ
∗

0

1

2π

Γ
(

Γ

2

)2
+ (E − E0)

2

where Γ is the coupling energy between the atoms in the chain.
Visually, this broadens the delta function with a width Γ and
which preserves the area under the curve.
Connecting leads to a device with many eigenstates, how-

ever, mixes and broadens these delta functions in unpredictable
ways to produce the LDOS we observe in a nanotransistor.
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Figure 4. DOS (green), Eigenenergy cecomposition (blue), inquiry energy
E0 (red) plotted with increasing values of Γ from left-to-right demonstrating
the value of adjusting this parameter for visualization aid. For small values,
distinctions between the eigenvalues are clear, but it is difficult to see. For
large values, the function is very easy to see, but detail is lost.

This occurs much in the same way that cutting a hole into
a resonating cavity will cause energy to leak and the sound
to change. This phenomenon is used to produce most wind
instruments and the analogy between the nanotransistor and a
flute is very instructive. In the former, we allow an electron
to enter the system and we observe how it emerges, having
scattered off the eigenvalues (and eigenstates) of the device. In
the latter, you provide energy to the flute by blowing against
the lip, this energy scatters off of resonant modes of the
flute, and emerges as a sound wave through the holes of the
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instrument. Just as an artisan wants to design a flute with a
high-quality sound and to produce particular tones by adjusting
the hole size and position, as well as the material of the flute,
as physicists we want to adjust the conductance properties
of the transistor by adjusting the lead width and the transistor
geometry. This is why examining the eigenstates of the system
and how they contribute to the “sound”, that is the transmission
and LDOS, is so valuable.
We can decompose the LDOS into the eigenstates of the

system in a manner similar to PDOS. In the perspective of
the eigenenergy decomposition, however, instead of looking
at how a single eigenstate contributes to the DOS over all
energies, we are interested in how all the eigenstates contribute
to the LDOS at a particular energy. We write the correlation
coefficient simply as

Ci (E) = PDOS(E, i)

Once we have calculated the correlation vector, we are
challenged with visualizing a discrete set of quantities that
correlate to a discrete set of energies with extrinsic mean-
ing. It is desirable to plot these quantities against the DOS
which is a function of energy, and it would be tempting to
plot them a series of delta functions in analogy with the
closed DOS. These are nearly impossible to visualize since
the delta functions may overlap or approach each other at
arbitrarily small distances. Incorporating information about the
correlation coefficient further complicates the visualization.
We instead make an analogy between the complex full system
and the simple one-atom system with one eigenstate connected
to the atom chain. In this case, we convolve the delta functions
with a Lorentzian of arbitrary width Γ and sum the result in
the equation

f(E, E0) =
1

2π

∑

i

Ci(E0)
Γ

(

Γ

2

)2
+ (E − Ei)

2

The results are plotted in the accompanying figure.

F. Analogy between density operator ρ̂(E) and transmission
operator T̂ (E)

The above formulations provide deep insight into the phe-
nomena behind the density operator. There remains however
a need to explore the transmission operator at the same level.
Physics have developed a quantity known as the spectral
operator

Â = G∗

In→Out(E)ΓOut(E)GIn→Out(E) = Γ−1

In (E)T̂ (E)

which provides information on how the scattering states of the
device contribute to the measured conductance. It is dependent
on the overlap between the eigenstates that the electron excites
and the boundary region of the output lead. This can be easily
understood since if the electron scatters off of a state that does
not allow it to couple to the output lead and exit the system,
then it cannot transmit across the device. We can replace all the
above formulas that utilize the density operator ρ̂(E) with the
spectral operator Â(E) to obtain parallel information about

Figure 5. Graphical user-interace for the Eigenexplorer. A) Eigenstate/LDOS
spatial plot. B) Energy indicator. C) Energy slider. D) Read out button.
E) Degeneracy indicator. F) Close button. G) Degeneracy rotation slider.
H) Move to next lowest-energy eigenstate. I) Eigenstate/LDOS toggle. J)
Transmission/LDOS toggle. K) Move to next highest-energy eigenstate. L)
Gamma indicator. M) Gamma slider. N) Spatial plot toggle. O) Eigenstate
decomposition/Partial DOS plot.

the transmission functions. We summarize the results in the
following set of equations

PTrans (E, n) = ψ∗

nÂ(E)ψn

LTrans(E, x) = A(E, x)

T (E) = Γin→out
N

∑

n=1

PTrans (E, n)

CT
i (E) = PTrans(E, i)

fT (E, E0) =
1

2π

∑

i

Ai(E0)
Γ

(

Γ

2

)2
+ (E − Ei)

2

III. USER INTERFACE
The user-interface is designed to provide intuitive controls

of the eigenstate, LDOS, and electron transmission data. It is
centered around correlating information in space as well as
observables for the experimentalist. We call it the Eigenstate
Explorer.
The Eigenstate Explorer’s main features are two large plots,

one on the left that plots the spatial information being exam-
ined, and one on the right which provides detailed information
about the density of states or transmission which would be
observed in an experiment. In it’s default state, it plots the
LDOS on the left at a random electron energy and plots the
eigenstate decomposition on the right.
The interface has three toggle buttons, the Eigenstate/LDOS

toggle, the DOS/T toggle, and the Spatial Plot toggle, the first
two of which toggle the interface between different modes
of operation. In the Eigenstate mode, the left side plots the
electron density for an individual eigenstate or representation
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of the eigensubspace. The eigenstate is chosen to correlate
the with eigenenergy closest to the energy selected by the
energy slider. If the user clicks either the left or right arrow
button, the eigenstate correlating to the next lowest or highest
energy is then selected. The right side plots the PDOS or
the PTrans of the eigenstate, which is chosen by the DOS/T
toggle. In the LDOS mode, the left side plots the LDOS
or the LTrans at the energy selected by the energy slider,
chosen by the DOS/T toggle. The right side then plots the
eigenenergy decomposition at that energy. The Spatial Plot
toggle allows the user to stop the computer from plotting
the spatial information, which can significantly increase the
performance of the computer. This can be useful for dragging
the energy slider to see how the eigenstate decomposition
changes continuously.
In the eigenstate mode, if the system has identified that the

eigenvalue being examined has two degenerate eigenstates in
its eigensubspace (see earlier for explanation) it updates the
degeneracy indicator and activates the eigensubspace rotation
slider. The user is then allowed to adjust the θ parameter
between 0 and 2π as the spatial plot updates concurrently.
For a degenerate eigensubspace, the definition of the PDOS
and the PTrans is actually the simple sum of the PDOS and
the PTrans for the two eigenstates of the subspace as already
defined. Thus as the user rotates in the eigensubspace, the
PDOS and PTrans do not change according to θ.

IV. VISUALIZATION ALGORITHMS

In this section I outline the various algorithms used to create
the spatial and function plots of the Eigenstate Explorer user-
interface.

A. Spatial Plots
The LDOS, described earlier in the paper, provides a nu-

merical value relating the probability of a scanning tunneling
microscope observing an electron at that position in space with
the energy specified. The computer calculates this sequence of
numbers for each point in the discretized space, then computes
the average ρ and the standard deviation σ. The LDOS is then
normalized so that

ρ(LDOS) = nsize

where nsize is the average circle size for the plotter. The
LDOS is plotted using red circles whose size is determined
by the normalized LDOS at that point. It is necessary to
normalize the LDOS at each electron energy so that they can
be compared for variations in their spatial pattern. In truth,
the LDOS total quantity varies with DOS, which is always
plotted to the right of the LDOS. If we did not normalize,
however, states with a low total DOS would be invisible to the
user. By providing the DOS function (with a red vertical line
to demarcate the electron energy) alongside the normalized
LDOS, the program is able to inform the user of both the
subtle changes at each energy and the overall scaling.
To avoid filling the spatial plot with an extreme value which

masks the rest of the plot, all points in space with a normalized
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Figure 6. Two-dimensional color image of the eigenenergy decomposition
function f(E, E0) where E0 varies by the y-axis and E varies by the x-axis.
Peaks along the most contributory eigenenergies are prevalent at E = ±1

LDOS above ρ+2σ are truncated to that quantity. Their circles
are plotted purple instead of red to avoid misleading the user.
When the user clicks the Eigenstate/LDOS toggle, the pro-

gram enters the eigenstate mode and the spatial plot changes
accordingly. In this mode, the circle sizes now reflect the
quantityρi (x) = |ψi (x)|2 normalized and truncated as for the
LDOS. Each eigenstate by definition is normalized, however,
so there is no need to provide information about the overall
scaling factor.

B. Function Plots

In both Eigenstate and DOS modes, the right hand side plots
the DOS or the Trans. Since extreme values are common in
these quantities as a result of Van Hove singularities, it is
necessary to scale these functions so that extreme values do
not overly mitigate the rest of the function. We calculate the
average ρ and the standard deviation σ and set the maximum
value of the y-axis to

ymax = min (ρ + 2σ, max (DOS))

In the Eigenstate mode, the right-hand side plots either the
PDOS or the PTrans underneath the DOS and the Trans. No
scaling is added since it is scientifically meaningful to show
the comparative values of the two functions. In the DOS mode,
the right-hand side plots the eigenenergy decomposition of the
LDOS or the LTrans along with the DOS and the Trans. In
this case, the eigenenergy decomposition is scaled simply so
that its largest value matches ymax since its overall scaling is
arbitrary to begin with.

C. Two-dimensional Static Plots

Clicking the “read out” button plots the full two-dimensional
information of the eigenenergy decomposition as a single color
image for comparison. This can be useful for a quick summary
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Figure 7. Two-dimensional greyscale image of the self-similarity matrix
function Si,j . Each point is plotted along the x- and y-axes by the eigenen-
ergies of the matrix element.

Figure 8. Proposed real-time scaling of small multiples of eigenstates to
reflect relative contribution to the LDOS

of the information but poor for the detailed analysis the user-
interface is designed for. The “read out” button also provides
the user the transmission self-similarity matrix defined by

Si,j =

ˆ

∞

−∞

CT
i (E) × CT

j (E)dE

For each point in the above image, the eigenenergies associated
with its x- and y-positions are compared for a similar transmis-
sion profile. White areas indicate eigenstates which contribute
strongly and in tandem, giving an indication of underlying
symmetries. In the above example, a few eigenstates at .75eV
resonate strongly with a wide spectrum of other eigenenergies.

V. CONCLUSION AND FUTURE WORK

The development of the Eigenstate Explorer has been in-
valuable as a learning tool for myself and as an effective
research tool. It has been used to systems outside the scope
of the original project, including Fabry-Perot resonators and
large finite-difference matrices. It has been effective in proving
the efficacy of the underlying algorithm used to efficiently
calculate the LDOS and the transmission, and it is currently
being used to custom-generate nanodevices with desirable

transmission properties. Experimentalists at the Molecular
Foundry have been recently successful in crafting large en-
sembles of nanodevices from graphene, and we are eager to
develop a multitude of studies utilizing this tool to examine
and interact with the experimental data.
There remain some future extensions of the current work.

One proposal, which was actually voiced early in project de-
velopment, included decomposing the LDOS into eigenstates
that could be simultaneously visualized. It was suggested that
the spatial scaling of the eigenstates could reflect their relative
contribution to the LDOS as in the accompanying figure.
The author would find such an extension visually appealing,
but ultimately it was decided that such a visualization would
require a large amount of work without much scientific reward.
The fate of this work is still unknown. Such visualizations

in physics have never been standardized or widely published,
while their value seems to be quite high. Functions such
as the eigenenergy decomposition are similarly novel to the
field, and finding the appropriate publication venue for it
could prove difficult. However, the pedagogical value of these
function is eminent. As the user scrolls through the electron
energy, it is immediately obvious how localized the system
is in energy, giving a strong indication of the amount of
scattering throughout the system. It was a real thrill to test
the Eigenstate Explorer for various extreme-example systems,
and see quantum mechanical principles emerge effortlessly.
Many seasoned professionals (read: Lab scientists and Berke-
ley physics professors) have voiced their surprise that their
intuitions for these systems were surprisingly underdeveloped
and have expressed an interest in their own copy of the
software for personal use. We hope to publish this tool for
them in the near future.
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