
 1

Polygon Vertex Set Matching Algorithm for Shapefile
Tweening

Razvan Corneliu Carbunescu
Department of Computer Science
University of California at Berkeley

carazvan@eecs.berkeley.edu

Sarah Van Wart
School of Information

University of California at Berkeley
vanwars@ischool.berkeley.edu

Abstract

This paper will explore the potential for a generalized
animation library and user interface scheme to
facilitate the understanding of geospatial datasets as
they change over time. By creating an easy way to
(1) load, annotate, and interact with shapefiles (a
proprietary GIS format developed by ESRI), (2)
animate and morph complex polygons across
shapefiles in a time series, and (3) integrate this

functionality with popular mapping APIs (such as
Modest Maps and Google Maps), a GIS visualization
framework can be created to assist users in identifying
patterns and trends in spatio-temporal data. At the
root of this problem is the need to find a good way to
match polygons across shapefiles, and to solve the
Polygon Vertex Matching problem, one of the most
important underlying problems of creating visual
changes between sets of polygons in a display. There
currently does not exist any good way of presenting

Figure 1 User interface enables shapefile tweening, allows for layer visibility interaction, and provides basic pan and zoom functionality.

Figure 2 Tween of a representative sample polygon

the changes of two areas represented in shapefiles
because of the very complex nature of the polygons
that fail most matching criteria of current algorithms.
As a result morphing shapes (tweening) is reduced in
most visualization packages to simple tweens
between regular well known shapes like triangles or
squares and is currently simply used in visualizing
scatter plots or similar displays. Visual morphing or
tweening would be of great importance in
understanding changes in physical areas that are
represented by complex polygons in shapefiles. In
addition to a proposed Flash-based UI, this paper
presents an algorithm that achieves a good vertex
matching between sets of polygons without making
serious assumptions about the properties of said
shapes and that reduces vertex matching artifacts.

Introduction

Shapefiles and GIS Software
Shapefiles [1] currently represent the most ubiquitous
format used to store, retrieve and visualize map data
and spatial features. Large collections of shapefiles
exist in a variety of data arenas and can store spatial
and attribute data about political, economic,
ecological, transportation, and parcel information,
among other things. Though these shapefiles
represent spatial information as a snapshot in time,
many of these shapefiles exist among a collection of
other similar shapefiles corresponding to a different
date as part of a time series (weekly, monthly, yearly).
In this scenario, it makes sense for GIS technologies
to provide a way in which to visually represent these
changes over time, given that the most important
properties of shapefile records are the shapes of the
actual regions themselves. Ott and Swiaczny note in
their book on Time-Integrative GIS that “a crucial
motivation for the development of time-integrative GIS
techniques is the fact that enormous amounts of data
have been collected in the last decades by census
offices, research projects, and not the least
companies, which can be revaluated and reused” and
that there are not simple ways to visually display “the
forest boundaries between 1850 and 1950” [2].
Simply observing the overlap of regions between two
shapefiles can make it difficult to interpret shape
differences between the overlaid polygons, and if
more than two shapefiles are considered the
transitions become nearly impossible to understand or
represent. Many GIS experts hold that "animation can

be used as an exploratory tool to detect similarities or
differences in distribution within a series of maps. This
is especially possible when one can interactively
access the individual frames in an animation and
quickly switch between individual maps or map
sequences [3]."

Tweening
Tweening, an important tool in the field of
visualization, is the process by which one image is
transformed into another image by generating
intermediate frames between the two to give the
appearance of a smooth transition. While the concept
of animation is not by any means new to visualization,
techniques for the animating of more complicated
shapes – those for which no simple, underlying
structure (table, tree, scatter plot, etc.) exists – have
not been well developed. Polygon tweening is one of
the remaining problems to be solved efficiently and
correctly for complicated shapes. Some complex
morphing capabilities exist in the newest version of
Flash, but these capabilities rely upon ‘hints’ given by
the programmer, and do not work well for polygons
with large vertex, which are typical in shapefiles.

Related Work

Existing Spatio-Temporal Data Visualizations
From the GIS perspective, a number of GIS
applications have been built with some capacity for
GIS animation. Perhaps the closest of these is
TimeMap, which has separate Java-based and Flash-
based web map viewers that support spatio-temporal
sense-making. The Flash-based viewer can animate
GIS files by tweening vector polygons, but exploratory
tasks currently must be done in a separate Java-
based viewer where data is animated by playing a
number of successive frames which toggle features
on and off according to a date filter. The GeoTime
time-space visualization framework allows users to
interactively create their own event-based stories over
time and animate them on demand, but in this case
the events are point-based and do not provide for
smooth transitions between polygons. ESRI also has
several desktop-based applications and plug-ins such
as Arc Hydro and STARS that allow for basic
animation of geospatial data. Regarding the ability to
easily view shapefiles on the web, Edwin van Rijkom
wrote a simple library to import shapefiles into Flash.

 3

Existing Vertex Set Matching Algorithms
There exist a good number of polygon vertex set
matching algorithms in the literature but it seems that
every one comes with very stringent requirements on
the type of polygons it can handle, or with exceptions
that cannot be easily handled by shapefile polygons.
Some interesting algorithms on this topic are:

Morphing using Extended Gaussian Image [4]
converts a convex polygon into its Extended Gaussian
Image (EGI) and then uses this representation on
both images to construct the intermediate values. The
algorithm first computes the ECI of the source and of
the target polygons. Next it matches source and target
normals on the ECI circle creating source-target
normal pairs. Then it linearly interpolates weights and
angles between normal pairs to derive the ECI of
intermediate steps. Finally, it reconstructs the convex
polygon corresponding to the ECI obtained by
interpolating the normals. This algorithm works well
but only for convex polygons whose EGI is unique.
Most shapefile polygons are unfortunately far from
convex.

Line length and inner angle interpolation [5] method
uses the representation of the polygon as a set of
lines and inner angles and simply linearly interpolates
between this set for the initial polygon and the final
polygon. While this approach has the advantage of
being inherently simple and fast the choosing of the
correct vertices when the polygon vertex number
doesn’t match between the initial and final polygon
make this method not applicable towards shapefile
polygons as these are unlikely to ever match if the
polygon shape has changed.

Triangulation Algorithms [6] transform the polygon
into a set of triangles with a skeleton link and then
changes the triangulation from one set to another by
minimizing ‘physical force’ required to move triangles
from the initial configuration to the final. These
algorithms are perhaps the most promising for the
purpose of guaranteeing no fake intersections or
topological changes in the intermediate polygons. The
problem with this algorithm though is the particular
requirement for ‘compatible polygons’, namely
creating a common graph of the centers of both
polygon triangulations with the same linking structure
which is not. The Steiner tree problem also that it
uses to find the final link between triangles is an NP-

complete problem so an approximation of the Steiner
tree must be calculated. The algorithm would create
much more movement in the matching to keep parts
connected and non-intersecting. Still this approach
would present the best alternative algorithm for
generating polygon matching especially since it has
the ability to best represent texture and texture
morphing on the polygons should this feature be
desired.

Methodology

Domain and Data Selection
We decided to explore one of the many scenarios in
which smooth-transition polygon morphing could be
applied to a visualization problem – changes in land-
use over time. Though we realized that the way in
which land-use evolves doesn’t necessarily follow a
smooth pattern of linear growth, the movement of the
edges of certain polygons would be a much strong
visual cue of geographic change that simply turning
each data layer on and off and requiring the use to
make the determination based on iterative
comparisons. We found a time-series, geospatial
dataset for land use in Hillsborough County, Florida
that consisted of a series of shapefiles that had been
generated for 1999, 2004, 2005, and 2006 from aerial
photography. These files were downloaded from the
Southwest Florida Water Management District’s public
access website and re-projected from the FL Albers
coordinate system into WGS84 using ArcGIS desktop
software from ESRI. Since the dataset was quite
large, only a subset of the land-use data – those
polygons associated with farmlands for a small area of
the county – was ultimately used, as a proof of
concept.

User Interface
We decided to build the application infrastructure on
top of Flash, Flex, and Flare, because of the robust
support that Flash has for vector graphics, animation,
and creating smooth transitions between shapes.
Several pre-existing technologies were integrated
together to create a mapping interface for the land use
shapefiles. We used a pre-existing Flash library
created by Edwin van Rijkom to parse and display
shapefile polygons in a Flex application. To give
these shapefile polygons some context, we decided to
use the Modest Maps API to support map tiling,
panning, and zooming. Each of the polygon shapefile

layers was symbolized, and a section was added to
enable users to turn the layers on and off so that they
could manually compare the differences in land use
across the given years. Finally, upon map
initialization, the four shapefiles were pre-loaded into
the Flex application from the file system and cached in
memory for quick retrieval. Though this technique
would not work for large sets of shapefiles, it worked
for our purposes as a proof of concept.

Polygon Matching Algorithm
Initially, we naively assumed that it would be possible
to use some sort of unique polygon attribute to match
polygons from one temporal snapshot to another.
That is, we had hoped that a polygon from the 1999
land use shapefile could be mapped to a polygon in
the 2004 shapefile using some sort of unique
identifier. In reality, we found that typically no such
historical continuity is explicitly recorded across
spatio-temporal GIS snapshots (for a number of
reasons), so we had to use methods for
approximating polygon intersection. Since we wanted
to focus primarily on the actual polygon morphing
problem, we developed a simple algorithm for
mapping overlapping polygons to each other by:

(1) Calculating the areas and centroids of each
polygon, P1 and P2.

(2) Calculating a “polygon radius,” based on the
area such that:

,

(3) Calculating the distance between the two
polygon centroids:

(4) Asserting that if D < R1 + R2, then the

polygons intersect

Figure 3 Centroid & Radius Matching (match if D < R1 + R2)

Using this method, we iterated through each
shapefile, and matched each polygon to a preceding

polygon and a succeeding polygon if intersection was
determined. We stored this matching information in a
data structure in memory so that it could be accessed
quickly for the animation routine.

Vertex Set Matching Algorithm
The first step in matching two polygons is finding the
minimum distance between a vertex on the initial
polygon and a second vertex on the second polygon.
This first step is one of the most important
assumptions in this algorithm as a bad match here
can result in very bad behavior in the match. Most
polygons presented though will satisfy this property
that the closest pair of points between any two points
will represent a correct matching. Usually this can be
thought of as the part of the polygon that stays
unchanged or the part of the polygon that moves the
least.

After this pair is found, since the vertex list for both
polygons can be thought of as a circular linked list, the
vertices are reordered with the new pair of vertices
being the first element in either polygon. This
matching gives the algorithm a reference point from
which to check for edge intersections at the level of
the vertices assigned in the assignment problem step.

Next another simple step is taken in finding the
second minimum distance between two vertices with
this second matching used to create an initial line from
which distances can then be calculated by the vertex
alignment part. The selection of this second minimum
vertex is also a delicate task as it has a major
influence over the rest of the code. However unlike
the first step this second matching can be at some
point changed during the course of the algorithm
which is not true for the initial matching.

With these two pairs of vertices and the list in the
reordered fashion a distance matrix between all pairs
of points is calculated. The appropriate changes are
made to the original distance matrix received to
simulate the value of the matrix after the assignment
problem algorithm would have selected those vertices.
The steps are subtracting the value of the matching
distance m(k0,l0) from all the first row where k0 is the
first vertex in the reorganized first polygon and l0 is the
first vertex in the reorganized second polygon. The
other step is similar only it involves creating the row

 5

and column values of the assignment problem for imin2,
jmin2 and subtracting this from the matrix.

The main part of the vertex set algorithm now starts,
which runs the normal assignment algorithm with the
same steps in changing the matrix for each iteration
but with the following major changes:

In order to preserve edge order if x is the truth
assignment matrix:

What this means, if we are looking at the matrix x, is
that given any matching at row i at position k, there
can be no matching in a row j unless it matches with a
higher column number l. This condition imposes a limit
on how far to the left or right a column j can look to
improve a value in the assignment problem. This also
imposes a limit on the initial population of the
minimum distance to a column since not all free rows
can reach all columns. This limitation also brings an
important question as to whether the algorithm will
ever finish since there is a possibility that no
improvement can be done but in this case the
algorithm sees that no change has been done and
produces a temporary output from the non-matched
vertex creation part of the algorithm. The only true
property other than the algorithm that is kept from the
assignment problem is that at the level of

the assignment matrix no vertex is allowed to be
matched with more than one other vertex.

Figure 4 Positions for assignment values given a 1 at position (i,j)

(green – valid; red – invalid)

Given a partial assignment matrix we check whether
we can run the vertex creation algorithm, namely
whether all current non-matched vertices are lying
along an edge on the matching. This means that there
exists no pair i,j for which the matching skips both the
line i and the column j. If the partial assignment matrix
doesn’t check out then we proceed to the next step.
Mathematically the test for the vertex creation part can
be expressed as:

The vertex creation algorithm creates two new
temporary lists for each polygon. The algorithm adds
both first vertices to the new temporary lists and starts
in the top-left corner (position 0,0) of the assignment
matrix and works its way down from the i,j position
where xi,j =1 towards the nr-1,nC-1 position by the
following pattern(we treat the array as if there existed
xnr , nc =1):

Matching a point to an edge happens by selecting the
closest point on the edge to the point we want to
match. The method for doing this is calculating the
perpendicular point that crosses the line of the edge
and then depending on which side of the segment it
falls into (outside or inside the segment) selecting one
of the endpoints of the segment or the actual
perpendicular distance to the point.

Figure 5 Matching a point to a segment (point – gray dot, segment –

blue line, NewP – orange dot

From these two temporary vertex arrays we can
calculate an approximate sum or value of how good
our approximation is by simply taking the distance
between matching i-i pairs of points. Because of the
construction of the temporary arrays they have the
same number of points, that the matching is i to i, and
all points are in order.

The final part of the algorithm is at every step of
adding another part to the assignment checking
whether the current sum is worse than the previous
sum case in which we stop. We also check that we
have not reached the number of vertices of one of the
polygons.

Algorithm speed is approximately O(n3) worst case
scenario (where n = min(n1,n2) but matching needs to
be run only once at load time of shapefiles so
calculating time may be hidden. Algorithm performs
well when one of the n1 is small < 300 regardless in
majority to the size of n2. The algorithm slows
significantly when presented with matching two
extremely large polygons n1, n2 > 1000. For this case
in particular a special part was added to the algorithm
to specify the maximum time that it can spend trying
to match two polygons. If the algorithm reaches that
time and still has not found ‘best’ solution the
algorithm gives the last previous temporary stored
array which represents the best approximation at the
time of the matching.

Algorithm Preprocessing of Polygons
By inspection on the normal types of polygons that
were asked to be matched certain pre-algorithm
changes to the program appeared to work very well in
helping the algorithm give a good match in most
cases:

Figures that suffer translation in the physical image
can provide very bad initial data should vertices from
opposite sides overlap because of the transition. Also
in most cases position of the object should not affect
how it changes its shape so the first pre-processing
option is subtracting the centroid values of both
polygon at the start of the algorithm and adding them
back after the matching has happened. This will
center both polygons on the same spot to better allow
for matching.

In the same way that translation can be partially taken
out of the equation of matching by subtracting the
centroid of the polygon, another important part of
preprocessing is relative scaling (scaling the polygon
by a factor of the ratio of areas of the two polygons).
This procedure will make both polygons be the ‘same
size’ and will allow for a much better match in general.
In the code the relative scaling can only be turned on
when selecting centroid removal also because scaling
would bring some questions of what point remains the
same (the top-left corner of the bounding box, the
centroid of object, etc.). In the Relative Scaling case
with centroid removal the scaling location is well
defined and does not need to choose any options.

Since the preprocessing mentioned above isn’t always
the best approximation, all three possible versions are
computed (no preprocessing, centroid subtraction
only, centroid and relative scaling) and the best
distance between groups of given vertices is kept as
the best solution. The general percentages of success
between the three procedures seem to be 10% no
preprocessing, 10% centroid subtraction and 80%
centroid and relative scaling in selecting the best
solution. This suggests that a simple acceleration of
the algorithm with the penalty of correctness might be
to simply run all polygons with the option of centroid
and relative scaling.

 7

Animating the Map
Once the vertices of all of the matched polygons were
recalculated above, Flare’s Sequence and Transition
classes were used to orchestrate the tweening. Since
the calculations were all done in the matching stage
the rendering of the tween is a simple O(n) operation
which allows for great visual effect by providing the
capability of tweening large sets of polygons
simultaneously.

Results

Using the methodology described above, we were
able to match and tween polygons across shapefile
snapshots. Flare had no trouble tweening hundreds
of polygons in parallel, which was very promising, and
the polygon animation seemed to be a much easier
way to detect polygon shape changes – especially
subtle changes – as compared to turning layers on
and off. Further user testing would be needed to
confirm this.

User Interface
As described in the methodology and as seen in
Figure 1, we created an interactive, web-based map
viewer with a basic navigation structure (panning and
zooming), the ability to turn the time-series shapefiles
on and off, and the ability to request the application to
match and tween polygons. Though the sample
shapefiles were small (approximately 120 polygons
each), they loaded and rendered as sprites (Flash-
based vector shapes) quite quickly. Flash event
handlers were used so that as the map panned and
zoomed, the polygon sprites were re-factored and
synchronized with the underlying base map tiles.

Polygon Matching
We found a number of challenges in matching
polygons, which are beyond the scope of this paper,
but which provide ample opportunities for future work.
First, we found that, not surprisingly, our intersection
heuristic was not sufficient for determining polygon
intersection and a much more comprehensive
algorithm should be used. This became apparent
when we observed that polygons were actually

a)

b)

c)

Figure 6 Matching polygons a) no preprocessing b) centroid subtraction c) centroid and relative scaling

tweening to adjacent, rather than overlapping
polygons from the subsequent Shapefile in the time
series. One way in which this could be addressed
would be to incorporate the polygon union and
intersection functions that are part of the open-source
Java library, JTS [7].
Another issue that we noticed was that a one-to-one
polygon matching algorithm was overly simplistic.
There are in fact cases where an animation would be
better characterized by splitting a source polygon and
having it tween to several destination polygons, for
example in the event that a section of land is bisected
by a new roadway. Similarly, there are cases where
several source polygons should tween to a single
destination polygon, for example if several parcels of
land were incorporated into a larger area. Hence,
many-to-many polygon matching support should be
incorporated into the library.

Vertex Set Matching
The polygons that were processed and tweened from
the shapefiles varied in sizes and shapes, so we were
able to gain a fairly wide range of the possible polygon
tweening scenarios with which the procedure had to
contend. There were some performance issues
when matching one large polygon (over 3,000
vertices) to another large polygon, and a strategy
would be needed to address certain Flash timeout
errors that occurred when processing large
geometries. The algorithm implementation itself,
however, was quite successful in creating smooth,
natural transitions between polygons. We observed
various shapes in order to determine ‘errors’ in the
morphing.
Note that while the algorithm guarantees that there
will not be any edge crossing in the initial step of
assignment, in the non-matched vertex problem this
assumption can be broken.

Figure 7 Sample results a) tweening a hole into a polygon b) matching 7(5:2)-7(2:5) vertex polygons produces 10 vertex polygons
c) matching a test polygon with a real polygon

a)

b)

c)

 9

Figure 7 presents a set of polygon tweens
implemented with the algorithm described in the paper
which all presented different challenges:

Discussion

The matching algorithm discussed in this paper has
been implemented as a class object in the Flare
Visualization toolkit [8]. The data is read in from the
shapefile using a modified version of the Van Rijkom
libraries [9] for shapefiles. The class was created to
extend previous existing classes in order to allow for
other tweens like color, rotation, and even embedding
to be done as simply as using another common shape
like a rectangle or circle.

From this proof of concept, it seems feasible –
through (1) improved polygon matching heuristics, (2)
a batch-processing of vertex matching between large
polygons, and (3) some indexing strategy to handle
large shapefiles – to have a generic framework by
which shapefiles can be animated across temporal
snapshots in a generic manner. These animations, in
conjunction with addition visualization tools, will
greatly improve the way in which spatio-temporal
datasets can be explored.

Future Work

Tweening Enhancements
While the algorithm to morph simple polygons to other
polygons was completed, much of the theory that was
thought of for this project initially never managed to
get it to the code so a short description of the rest of
the algorithms that were developed will follow now
and will end with algorithms that need to be developed
for better tweening but that were not thought of during
the time of the class project:

Tweening polygons which contain holes represent are
a surprisingly important part of shapefile tweening, as
almost all polygons have some hole or another. The
algorithm to render the holes already exists in the
code and consists of rendering the entire object in one
single pass but by creating ‘cuts’ that reach the holes.
The algorithm for the holes would start by matching
the outer polygon shape to final polygon. The holes
would then be ‘moved’ to the final position by
weighted distance sum with closest vertices getting

weight based on the inverse of the distance to a point.
We would find the matching between holes in final
polygon by simple polygon matching algorithm (the
centroid radius approach described in the paper). We
create an initial adding of the holes into the
representation of the polygon by means of the special
cuts. While there are still holes not matched we find
the closest centroid to an edge and connect the
centroid (the intersection with the edge of the hole) to
the edge of the outer polygon and then repeat making
sure to now consider the hole as part of the ‘outer’
polygon. This algorithm is O(h2 n) where h is the
number of holes and the n is the number of vertices
on the outer polygon. Finally we match the connecting
cuts to the final polygon again by weighted distance
sum.

Tweening many to many polygons will probably
represent the final step in a polygon matching
algorithm as this would depend on all other parts
working and itself recursively narrowing the number in
the groups of polygons that need to be matched. We
match the convex hulls of the groups of polygons one
to another. The convex hull around the group of ‘initial’
polygons creates a ‘hole’ the inside of which
represents the empty space between the all polygons.
This ‘hole’ is moved by weighted distance sum to final
position. The moved initial convex hole is matched to
final convex hole (problem is recursive but even in a
worst case scenario the polygons in a group decrease
by one until it represents a simple matching) An
algorithm is still needed to keep track of what the hole
represents empty space or polygons (hole’s within
hole’s are actually polygons) and algorithm is also
needed to reconstruct the matching of vertices from all
intermediate steps.

Selecting between best preprocessing technique
based on topological errors not the linear sum. This
would allow for a much more ‘correct’ representation
of the polygon tween but no simple algorithm was
thought of.

Polygon Matching Enhancements
In addition to tweening enhancements, a better way of
matching polygons to one another must be developed
(as explained in the “Results” section), perhaps using
the open-source libraries available from the JTS
Topology Suite. A many-to-many polygon matching
data structure must also be implemented to better

mirror the way in which geometries change in the real
world.

Memory Management and Performance
Enhancements
Performance-wise, to make this type of generic
application scalable, a methodology must be
developed to manage large shapefile datasets. It is
impractical to load millions of records worth of
shapefiles into memory, so the ability for the tool to
support a one-time batch process by which shapefiles
are indexed and matched. With the matching and
indexing already complete, loading the necessary
“PolySprites” on demand will be trivial for Flash.

Data Exploration Enhancements
Finally, we would like to expand this tool so that it is
not simply an animation tool, but also a data
exploration tool. Since we are already calculating
areas, centroids, and polygon mappings across
shapefiles, it follows that we should also support the
user’s ability to ask spatial questions and perform
spatial queries to answer questions like, “In which
direction and to what extent has the population of City
A grown over the past 30 years?”, “How did the river
affect various flood zones during the last few weeks of
rainfall?”, or “How has the expansion of this roadway
affected development in this area?” (which are all
questions that Ott and Swiaczny identify to be difficult
to do with the existing GIS frameworks).

References

1. ‘ESRI Shapefile Technical Description’, An
ESRI White Paper, July 1998.

2. Ott, Thomas, and Frank Swiaczny. Time-
Integrative Geographic Information Systems :
Management and Analysis of Spatio-
Temporal Data. New York: Springer, 2001. 4-
5.

3. Michael P. Peterson, Spatial Visualization
through Cartographic Animation: Theory and
Practice,
http://libraries.maine.edu/Spatial/gisweb/spatd
b/gis-lis/gi94078.html

4. Manolis Kamvysselis , Two Dimensional
Morphing using Extended Gaussian Image,
http://web.mit.edu/manoli/ecimorph/www/ecim
orph.html

5. T. W. Sederberg, P. Gao, and G. Mu H.
Wang. ‘2-d shape blending: An intrinsic
solution to the vertex path problem’, Computer
Graphics, 27:15–18, 1993.

6. Craig Gotsman, Vitaly Surazhsky ,’
Guaranteed intersection-free polygon
morphing’,
http://www.cs.technion.ac.il/~gotsman/Amend
edPubl/GuaranteedIntersection/GuaranteedInt
ersection.pdf

7. The JTS Topology Suite is an API of 2D
spatial predicates and functions,
http://www.vividsolutions.com/jts/jtshome.htm.

8. Flare – Prefuse Visualization Toolkit,
http://flare.prefuse.org/

9. Edwin Van Rijkom, Shapefile library,
http://code.google.com/p/vanrijkom-flashlibs/

