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Abstract 
 
This paper will explore the potential for a generalized 
animation library and user interface scheme to 
facilitate the understanding of geospatial datasets as 
they change over time.  By creating an easy way to 
(1) load, annotate, and interact with shapefiles (a 
proprietary GIS format developed by ESRI), (2) 
animate and morph complex polygons across 
shapefiles in a time series, and (3) integrate this 

functionality with popular mapping APIs (such as 
Modest Maps and Google Maps), a GIS visualization 
framework can be created to assist users in identifying 
patterns and trends in spatio-temporal data.  At the 
root of this problem is the need to find a good way to 
match polygons across shapefiles, and to solve the 
Polygon Vertex Matching problem, one of the most 
important underlying problems of creating visual 
changes between sets of polygons in a display. There 
currently does not exist any good way of presenting 

Figure 1 User interface enables shapefile tweening, allows for layer visibility interaction, and provides basic pan and zoom functionality. 

Figure 2 Tween of a representative sample polygon 



 

the changes of two areas represented in shapefiles 
because of the very complex nature of the polygons 
that fail most matching criteria of current algorithms. 
As a result morphing shapes (tweening) is reduced in 
most visualization packages to simple tweens 
between regular well known shapes like triangles or 
squares and is currently simply used in visualizing 
scatter plots or similar displays. Visual morphing or 
tweening would be of great importance in 
understanding changes in physical areas that are 
represented by complex polygons in shapefiles.  In 
addition to a proposed Flash-based UI, this paper 
presents an algorithm that achieves a good vertex 
matching between sets of polygons without making 
serious assumptions about the properties of said 
shapes and that reduces vertex matching artifacts. 
 

Introduction 
 
Shapefiles and GIS Software 
Shapefiles [1] currently represent the most ubiquitous 
format used to store, retrieve and visualize map data 
and spatial features. Large collections of shapefiles 
exist in a variety of data arenas and can store spatial 
and attribute data about political, economic, 
ecological, transportation, and parcel information, 
among other things. Though these shapefiles 
represent spatial information as a snapshot in time, 
many of these shapefiles exist among a collection of 
other similar shapefiles corresponding to a different 
date as part of a time series (weekly, monthly, yearly).   
In this scenario, it makes sense for GIS technologies 
to provide a way in which to visually represent these 
changes over time, given that the most important 
properties of shapefile records are the shapes of the 
actual regions themselves. Ott and Swiaczny note in 
their book on Time-Integrative GIS that “a crucial 
motivation for the development of time-integrative GIS 
techniques is the fact that enormous amounts of data 
have been collected in the last decades by census 
offices, research projects, and not the least 
companies, which can be revaluated and reused” and 
that there are not simple ways to visually display “the 
forest boundaries between 1850 and 1950” [2].   
Simply observing the overlap of regions between two 
shapefiles can make it difficult to interpret shape 
differences between the overlaid polygons, and if 
more than two shapefiles are considered the 
transitions become nearly impossible to understand or 
represent.  Many GIS experts hold that "animation can 

be used as an exploratory tool to detect similarities or 
differences in distribution within a series of maps. This 
is especially possible when one can interactively 
access the individual frames in an animation and 
quickly switch between individual maps or map 
sequences [3]." 
 
Tweening 
Tweening, an important tool in the field of 
visualization, is the process by which one image is 
transformed into another image by generating 
intermediate frames between the two to give the 
appearance of a smooth transition. While the concept 
of animation is not by any means new to visualization, 
techniques for the animating of more complicated 
shapes – those for which no simple, underlying 
structure (table, tree, scatter plot, etc.) exists – have 
not been well developed. Polygon tweening is one of 
the remaining problems to be solved efficiently and 
correctly for complicated shapes. Some complex 
morphing capabilities exist in the newest version of 
Flash, but these capabilities rely upon ‘hints’ given by 
the programmer, and do not work well for polygons 
with large vertex, which are typical in shapefiles.  
 
Related Work 
 
Existing Spatio-Temporal Data Visualizations 
From the GIS perspective, a number of GIS 
applications have been built with some capacity for 
GIS animation.  Perhaps the closest of these is 
TimeMap, which has separate Java-based and Flash-
based web map viewers that support spatio-temporal 
sense-making.  The Flash-based viewer can animate 
GIS files by tweening vector polygons, but exploratory 
tasks currently must be done in a separate Java-
based viewer where data is animated by playing a 
number of successive frames which toggle features 
on and off according to a date filter.  The GeoTime 
time-space visualization framework allows users to 
interactively create their own event-based stories over 
time and animate them on demand, but in this case 
the events are point-based and do not provide for 
smooth transitions between polygons.  ESRI also has 
several desktop-based applications and plug-ins such 
as Arc Hydro and STARS that allow for basic 
animation of geospatial data.  Regarding the ability to 
easily view shapefiles on the web, Edwin van Rijkom 
wrote a simple library to import shapefiles into Flash.   
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Existing Vertex Set Matching Algorithms 
There exist a good number of polygon vertex set 
matching algorithms in the literature but it seems that 
every one comes with very stringent requirements on 
the type of polygons it can handle, or with exceptions 
that cannot be easily handled by shapefile polygons. 
Some interesting algorithms on this topic are: 
 
Morphing using Extended Gaussian Image [4] 
converts a convex polygon into its Extended Gaussian 
Image (EGI) and then uses this representation on 
both images to construct the intermediate values. The 
algorithm first computes the ECI of the source and of 
the target polygons. Next it matches source and target 
normals on the ECI circle creating source-target 
normal pairs. Then it linearly interpolates weights and 
angles between normal pairs to derive the ECI of 
intermediate steps. Finally, it reconstructs the convex 
polygon corresponding to the ECI obtained by 
interpolating the normals. This algorithm works well 
but only for convex polygons whose EGI is unique. 
Most shapefile polygons are unfortunately far from 
convex. 
 
Line length and inner angle interpolation [5] method 
uses the representation of the polygon as a set of 
lines and inner angles and simply linearly interpolates 
between this set for the initial polygon and the final 
polygon. While this approach has the advantage of 
being inherently simple and fast the choosing of the 
correct vertices when the polygon vertex number 
doesn’t match between the initial and final polygon 
make this method not applicable towards shapefile 
polygons as these are unlikely to ever match if the 
polygon shape has changed. 
 
Triangulation Algorithms [6] transform the polygon 
into a set of triangles with a skeleton link and then 
changes the triangulation from one set to another by 
minimizing ‘physical force’ required to move triangles 
from the initial configuration to the final. These 
algorithms are perhaps the most promising for the 
purpose of guaranteeing no fake intersections or 
topological changes in the intermediate polygons. The 
problem with this algorithm though is the particular 
requirement for ‘compatible polygons’, namely 
creating a common graph of the centers of both 
polygon triangulations with the same linking structure 
which is not.  The Steiner tree problem also that it 
uses to find the final link between triangles is an NP-

complete problem so an approximation of the Steiner 
tree must be calculated. The algorithm would create 
much more movement in the matching to keep parts 
connected and non-intersecting. Still this approach 
would present the best alternative algorithm for 
generating polygon matching especially since it has 
the ability to best represent texture and texture 
morphing on the polygons should this feature be 
desired.  
 
Methodology 
 
Domain and Data Selection 
We decided to explore one of the many scenarios in 
which smooth-transition polygon morphing could be 
applied to a visualization problem – changes in land-
use over time.  Though we realized that the way in 
which land-use evolves doesn’t necessarily follow a 
smooth pattern of linear growth, the movement of the 
edges of certain polygons would be a much strong 
visual cue of geographic change that simply turning 
each data layer on and off and requiring the use to 
make the determination based on iterative 
comparisons.  We found a time-series, geospatial 
dataset for land use in Hillsborough County, Florida 
that consisted of a series of shapefiles   that had been 
generated for 1999, 2004, 2005, and 2006 from aerial 
photography.  These files were downloaded from the 
Southwest Florida Water Management District’s public 
access website and re-projected from the FL Albers 
coordinate system into WGS84 using ArcGIS desktop 
software from ESRI.  Since the dataset was quite 
large, only a subset of the land-use data – those 
polygons associated with farmlands for a small area of 
the county – was ultimately used, as a proof of 
concept.    
 
User Interface 
We decided to build the application infrastructure on 
top of Flash, Flex, and Flare, because of the robust 
support that Flash has for vector graphics, animation, 
and creating smooth transitions between shapes.  
Several pre-existing technologies were integrated 
together to create a mapping interface for the land use 
shapefiles.  We used a pre-existing Flash library 
created by Edwin van Rijkom to parse and display 
shapefile polygons in a Flex application.  To give 
these shapefile polygons some context, we decided to 
use the Modest Maps API to support map tiling, 
panning, and zooming.   Each of the polygon shapefile 



 

layers was symbolized, and a section was added to 
enable users to turn the layers on and off so that they 
could manually compare the differences in land use 
across the given years.  Finally, upon map 
initialization, the four shapefiles were pre-loaded into 
the Flex application from the file system and cached in 
memory for quick retrieval.  Though this technique 
would not work for large sets of shapefiles, it worked 
for our purposes as a proof of concept. 
 
Polygon Matching Algorithm 
Initially, we naively assumed that it would be possible 
to use some sort of unique polygon attribute to match 
polygons from one temporal snapshot to another.  
That is, we had hoped that a polygon from the 1999 
land use shapefile could be mapped to a polygon in 
the 2004 shapefile using some sort of unique 
identifier.  In reality, we found that typically no such 
historical continuity is explicitly recorded across 
spatio-temporal GIS snapshots (for a number of 
reasons), so we had to use methods for 
approximating polygon intersection.  Since we wanted 
to focus primarily on the actual polygon morphing 
problem, we developed a simple algorithm for 
mapping overlapping polygons to each other by: 
 

(1) Calculating the areas and centroids of each 
polygon, P1 and P2. 

(2) Calculating a “polygon radius,” based on the 
area such that:  

,    

(3) Calculating the distance between the two 
polygon centroids: 

 
(4) Asserting that if D < R1 + R2, then the 

polygons intersect 

 
Figure 3 Centroid & Radius Matching (match if D < R1 + R2)  

 
Using this method, we iterated through each 
shapefile, and matched each polygon to a preceding 

polygon and a succeeding polygon if intersection was 
determined.  We stored this matching information in a 
data structure in memory so that it could be accessed 
quickly for the animation routine. 
 
Vertex Set Matching Algorithm 
The first step in matching two polygons is finding the 
minimum distance between a vertex on the initial 
polygon and a second vertex on the second polygon. 
This first step is one of the most important 
assumptions in this algorithm as a bad match here 
can result in very bad behavior in the match. Most 
polygons presented though will satisfy this property 
that the closest pair of points between any two points 
will represent a correct matching. Usually this can be 
thought of as the part of the polygon that stays 
unchanged or the part of the polygon that moves the 
least.  
 
After this pair is found, since the vertex list for both 
polygons can be thought of as a circular linked list, the 
vertices are reordered with the new pair of vertices 
being the first element in either polygon. This 
matching gives the algorithm a reference point from 
which to check for edge intersections at the level of 
the vertices assigned in the assignment problem step. 
 
Next another simple step is taken in finding the 
second minimum distance between two vertices with 
this second matching used to create an initial line from 
which distances can then be calculated by the vertex 
alignment part. The selection of this second minimum 
vertex is also a delicate task as it has a major 
influence over the rest of the code. However unlike 
the first step this second matching can be at some 
point changed during the course of the algorithm 
which is not true for the initial matching. 
 
With these two pairs of vertices and the list in the 
reordered fashion a distance matrix between all pairs 
of points is calculated. The appropriate changes are 
made to the original distance matrix received to 
simulate the value of the matrix after the assignment 
problem algorithm would have selected those vertices. 
The steps are subtracting the value of the matching 
distance m(k0,l0) from all the first row where k0 is the 
first vertex in the reorganized first polygon and l0 is the 
first vertex in the reorganized second polygon. The 
other step is similar only it involves creating the row 
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and column values of the assignment problem for imin2, 
jmin2 and subtracting this from the matrix. 
  
The main part of the vertex set algorithm now starts, 
which runs the normal assignment algorithm with the 
same steps in changing the matrix for each iteration 
but with the following major changes: 
 
In order to preserve edge order if x is the truth 
assignment matrix: 
 

 
 
What this means, if we are looking at the matrix x, is 
that given any matching at row i at position k, there 
can be no matching in a row j unless it matches with a 
higher column number l. This condition imposes a limit 
on how far to the left or right a column j can look to 
improve a value in the assignment problem. This also 
imposes a limit on the initial population of the 
minimum distance to a column since not all free rows 
can reach all columns. This limitation also brings an 
important question as to whether the algorithm will 
ever finish since there is a possibility that no 
improvement can be done but in this case the 
algorithm sees that no change has been done and 
produces a temporary output from the non-matched 
vertex creation part of the algorithm. The only true 
property other than the algorithm that is kept from the 
assignment problem is that at the level of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the assignment matrix no vertex is allowed to be 
matched with more than one other vertex. 
 

 

 
Figure 4 Positions for assignment values given a 1 at position (i,j) 

(green – valid; red – invalid)   
 

Given a partial assignment matrix we check whether 
we can run the vertex creation algorithm, namely 
whether all current non-matched vertices are lying 
along an edge on the matching. This means that there 
exists no pair i,j for which the matching skips both the 
line i and the column j. If the partial assignment matrix 
doesn’t check out then we proceed to the next step. 
Mathematically the test for the vertex creation part can 
be expressed as: 

 
The vertex creation algorithm creates two new 
temporary lists for each polygon. The algorithm adds 
both first vertices to the new temporary lists and starts 
in the top-left corner (position 0,0) of the assignment 
matrix and works its way down from the i,j position 
where xi,j =1 towards the nr-1,nC-1 position by the 
following pattern(we treat the array as if there existed 
xnr , nc  =1 ): 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

Matching a point to an edge happens by selecting the 
closest point on the edge to the point we want to 
match. The method for doing this is calculating the 
perpendicular point that crosses the line of the edge 
and then depending on which side of the segment it 
falls into (outside or inside the segment) selecting one 
of the endpoints of the segment or the actual 
perpendicular distance to the point. 
 
 
 
 
 
 
Figure 5 Matching a point to a segment (point – gray dot, segment – 

blue line, NewP – orange dot 
 

From these two temporary vertex arrays we can 
calculate an approximate sum or value of how good 
our approximation is by simply taking the distance 
between matching i-i pairs of points. Because of the 
construction of the temporary arrays they have the 
same number of points, that the matching is i to i, and 
all points are in order. 
 

 
 
The final part of the algorithm is at every step of 
adding another part to the assignment checking 
whether the current sum is worse than the previous 
sum case in which we stop. We also check that we 
have not reached the number of vertices of one of the 
polygons. 
 
Algorithm speed is approximately O(n3) worst case 
scenario (where n = min(n1,n2) but matching needs to 
be run only once at load time of shapefiles so 
calculating time may be hidden.  Algorithm performs 
well when one of the n1 is small < 300 regardless in 
majority to the size of n2.  The algorithm slows 
significantly when presented with matching two 
extremely large polygons n1, n2 > 1000. For this case 
in particular a special part was added to the algorithm 
to specify the maximum time that it can spend trying 
to match two polygons. If the algorithm reaches that 
time and still has not found ‘best’ solution the 
algorithm gives the last previous temporary stored 
array which represents the best approximation at the 
time of the matching.  

Algorithm Preprocessing of Polygons 
By inspection on the normal types of polygons that 
were asked to be matched certain pre-algorithm 
changes to the program appeared to work very well in 
helping the algorithm give a good match in most 
cases: 
 
Figures that suffer translation in the physical image 
can provide very bad initial data should vertices from 
opposite sides overlap because of the transition. Also 
in most cases position of the object should not affect 
how it changes its shape so the first pre-processing 
option is subtracting the centroid values of both 
polygon at the start of the algorithm and adding them 
back after the matching has happened. This will 
center both polygons on the same spot to better allow 
for matching. 
 
In the same way that translation can be partially taken 
out of the equation of matching by subtracting the 
centroid of the polygon, another important part of 
preprocessing is relative scaling (scaling the polygon 
by a factor of the ratio of areas of the two polygons). 
This procedure will make both polygons be the ‘same 
size’ and will allow for a much better match in general. 
In the code the relative scaling can only be turned on 
when selecting centroid removal also because scaling 
would bring some questions of what point remains the 
same (the top-left corner of the bounding box, the 
centroid of object, etc.). In the Relative Scaling case 
with centroid removal the scaling location is well 
defined and does not need to choose any options. 
 

Since the preprocessing mentioned above isn’t always 
the best approximation, all three possible versions are 
computed (no preprocessing, centroid subtraction 
only, centroid and relative scaling) and the best 
distance between groups of given vertices is kept as 
the best solution. The general percentages of success 
between the three procedures seem to be 10% no 
preprocessing, 10% centroid subtraction and 80% 
centroid and relative scaling in selecting the best 
solution. This suggests that a simple acceleration of 
the algorithm with the penalty of correctness might be 
to simply run all polygons with the option of centroid 
and relative scaling. 
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Animating the Map 
Once the vertices of all of the matched polygons were 
recalculated above, Flare’s Sequence and Transition 
classes were used to orchestrate the tweening. Since 
the calculations were all done in the matching stage 
the rendering of the tween is a simple O(n) operation 
which allows for great visual effect by providing the 
capability of tweening large sets of polygons 
simultaneously. 
 
Results 
 
Using the methodology described above, we were 
able to match and tween polygons across shapefile 
snapshots.  Flare had no trouble tweening hundreds 
of polygons in parallel, which was very promising, and 
the polygon animation seemed to be a much easier 
way to detect polygon shape changes – especially 
subtle changes – as compared to turning layers on 
and off.  Further user testing would be needed to 
confirm this. 
 
 

User Interface 
As described in the methodology and as seen in 
Figure 1, we created an interactive, web-based map 
viewer with a basic navigation structure (panning and 
zooming), the ability to turn the time-series shapefiles 
on and off, and the ability to request the application to 
match and tween polygons.  Though the sample 
shapefiles were small (approximately 120 polygons 
each), they loaded and rendered as sprites (Flash-
based vector shapes) quite quickly.  Flash event 
handlers were used so that as the map panned and 
zoomed, the polygon sprites were re-factored and 
synchronized with the underlying base map tiles. 
 
Polygon Matching 
We found a number of challenges in matching 
polygons, which are beyond the scope of this paper, 
but which provide ample opportunities for future work.  
First, we found that, not surprisingly, our intersection 
heuristic was not sufficient for determining polygon 
intersection and a much more comprehensive 
algorithm should be used.  This became apparent 
when we observed that polygons were actually 

a) 

b) 

c) 

Figure 6 Matching polygons a) no preprocessing b) centroid subtraction c) centroid and relative scaling 



 

tweening to adjacent, rather than overlapping 
polygons from the subsequent Shapefile in the time 
series.  One way in which this could be addressed 
would be to incorporate the polygon union and 
intersection functions that are part of the open-source 
Java library, JTS [7]. 
Another issue that we noticed was that a one-to-one 
polygon matching algorithm was overly simplistic.  
There are in fact cases where an animation would be 
better characterized by splitting a source polygon and 
having it tween to several destination polygons, for 
example in the event that a section of land is bisected 
by a new roadway.  Similarly, there are cases where 
several source polygons should tween to a single 
destination polygon, for example if several parcels of 
land were incorporated into a larger area.  Hence, 
many-to-many polygon matching support should be 
incorporated into the library. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vertex Set Matching 
The polygons that were processed and tweened from 
the shapefiles varied in sizes and shapes, so we were 
able to gain a fairly wide range of the possible polygon 
tweening scenarios with which the procedure had to 
contend.   There were some performance issues 
when matching one large polygon (over 3,000 
vertices) to another large polygon, and a strategy 
would be needed to address certain Flash timeout 
errors that occurred when processing large 
geometries.  The algorithm implementation itself, 
however, was quite successful in creating smooth, 
natural transitions between polygons.  We observed 
various shapes in order to determine ‘errors’ in the 
morphing.  
Note that while the algorithm guarantees that there 
will not be any edge crossing in the initial step of 
assignment, in the non-matched vertex problem this 
assumption can be broken.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Sample results a) tweening a hole into a polygon b) matching 7(5:2)-7(2:5) vertex polygons produces 10 vertex polygons  
c) matching a test polygon with a real polygon 

 

a) 

b) 

c) 
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Figure 7 presents a set of polygon tweens 
implemented with the algorithm described in the paper 
which all presented different challenges: 
 
Discussion 
 
The matching algorithm discussed in this paper has 
been implemented as a class object in the Flare 
Visualization toolkit [8]. The data is read in from the 
shapefile using a modified version of the Van Rijkom 
libraries [9] for shapefiles. The class was created to 
extend previous existing classes in order to allow for 
other tweens like color, rotation, and even embedding 
to be done as simply as using another common shape 
like a rectangle or circle. 
 
From this proof of concept, it seems feasible – 
through (1) improved polygon matching heuristics, (2) 
a batch-processing of vertex matching between large 
polygons, and (3) some indexing strategy to handle 
large shapefiles – to have a generic framework by 
which shapefiles can be animated across temporal 
snapshots in a generic manner.  These animations, in 
conjunction with addition visualization tools, will 
greatly improve the way in which spatio-temporal 
datasets can be explored. 
 
Future Work 
 
Tweening Enhancements 
While the algorithm to morph simple polygons to other 
polygons was completed, much of the theory that was 
thought of for this project initially never managed to 
get it to the code so a short description of the rest of 
the algorithms that were developed will follow now 
and will end with algorithms that need to be developed 
for better tweening but that were not thought of during 
the time of the class project: 
 
Tweening polygons which contain holes represent are 
a surprisingly important part of shapefile tweening, as 
almost all polygons have some hole or another. The 
algorithm to render the holes already exists in the 
code and consists of rendering the entire object in one 
single pass but by creating ‘cuts’ that reach the holes. 
The algorithm for the holes would start by matching 
the outer polygon shape to final polygon. The holes 
would then be ‘moved’ to the final position by 
weighted distance sum with closest vertices getting 

weight based on the inverse of the distance to a point. 
We would find the matching between holes in final 
polygon by simple polygon matching algorithm (the 
centroid radius approach described in the paper). We 
create an initial adding of the holes into the 
representation of the polygon by means of the special 
cuts. While there are still holes not matched we find 
the closest centroid to an edge and connect the 
centroid (the intersection with the edge of the hole) to 
the edge of the outer polygon and then repeat making 
sure to now consider the hole as part of the ‘outer’ 
polygon. This algorithm is O(h2 n) where h is the 
number of holes and the n is the number of vertices 
on the outer polygon. Finally we match the connecting 
cuts to the final polygon again by weighted distance 
sum.  
 
Tweening many to many polygons will probably 
represent the final step in a polygon matching 
algorithm as this would depend on all other parts 
working and itself recursively narrowing the number in 
the groups of polygons that need to be matched. We 
match the convex hulls of the groups of polygons one 
to another. The convex hull around the group of ‘initial’ 
polygons creates a ‘hole’ the inside of which 
represents the empty space between the all polygons. 
This ‘hole’ is moved by weighted distance sum to final 
position. The moved initial convex hole is matched to 
final convex hole (problem is recursive but even in a 
worst case scenario the polygons in a group decrease 
by one until it represents a simple matching) An 
algorithm is still needed to keep track of what the hole 
represents empty space or polygons (hole’s within 
hole’s are actually polygons) and algorithm is also 
needed to reconstruct the matching of vertices from all 
intermediate steps. 
 
Selecting between best preprocessing technique 
based on topological errors not the linear sum. This 
would allow for a much more ‘correct’ representation 
of the polygon tween but no simple algorithm was 
thought of. 
 
Polygon Matching Enhancements 
In addition to tweening enhancements, a better way of 
matching polygons to one another must be developed 
(as explained in the “Results” section), perhaps using 
the open-source libraries available from the JTS 
Topology Suite.  A many-to-many polygon matching 
data structure must also be implemented to better 



 

mirror the way in which geometries change in the real 
world.  
 
Memory Management and Performance 
Enhancements 
Performance-wise, to make this type of generic 
application scalable, a methodology must be 
developed to manage large shapefile datasets.  It is 
impractical to load millions of records worth of 
shapefiles into memory, so the ability for the tool to 
support a one-time batch process by which shapefiles 
are indexed and matched.  With the matching and 
indexing already complete, loading the necessary 
“PolySprites” on demand will be trivial for Flash. 
 
Data Exploration Enhancements 
Finally, we would like to expand this tool so that it is 
not simply an animation tool, but also a data 
exploration tool.  Since we are already calculating 
areas, centroids, and polygon mappings across 
shapefiles, it follows that we should also support the 
user’s ability to ask spatial questions and perform 
spatial queries to answer questions like, “In which 
direction and to what extent has the population of City 
A grown over the past 30 years?”, “How did the river 
affect various flood zones during the last few weeks of 
rainfall?”, or “How has the expansion of this roadway 
affected development in this area?” (which are all 
questions that Ott and Swiaczny identify to be difficult 
to do with the existing GIS frameworks). 
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