
Automatically Generated Maps of 3D Environments

James F. Hamlin∗

University of California, Berkeley

Abstract

A system for generating visualizations of routes in 3D environ-
ments is presented. From the input of a 3D triangle mesh, the ap-
proximate height of a navigating agent, and the number of floors,
the system generates a segmentation of the environment into rooms
and a roadmap for routing using a version of the watershed algo-
rithm. A user may then interactively select source and destination
rooms, and a shortest-path algorithm on the roadmap discovers the
optimal route. Finally, the system selects viewing parameters by
optimizing a score function of the view to produce a single static
image of the path in an exploded view. The resulting visualization
of the route displays simultaneously internal structural features of
the building at each relevant floor while maintaining path visibil-
ity and clarity of important navigational cues such as changes in
orientation.

Keywords: Visualization, Architecture, Mapping, Navigation
Aids

1 Introduction

Computer-generated 2D maps have been popular web applications
for years. The problem of automatically generating maps display-
ing paths between two locations easily extends to 3D environments,
but little work has been done towards designing analogous systems.
Just as 2D roadmaps can be invaluable to a human navigator when
driving, 3D versions of such maps for architectural (or other 3D)
environments may be useful for way-finding. The mock example
from Tufte (Figure 1) demonstrates the possible output of such a
system. Route maps of 3D environments could also be useful for
other visualization tasks involving paths in 3D, just as routes on 2D
maps generalize to tasks beyond mere way-finding, a paradigmatic
example being Charles Joseph Minard’s map of the 1812 march of
Napoleon’s army into Russia [Tufte 2001].

Developing a mostly-automated system for generating such maps
with little user input and scarce semantic information beyond the
raw geometry presents several interesting challenges: segmentation
and analysis of the input, selection of a clear set of lines indicat-
ing the desired shortest path, selection and adjustment of the proper
visualization parameters to produce a final static image. The sys-
tem presented in this paper makes some headway towards an al-
most completely automated , with a framework for the generation
of high-quality static images via optimization. Almost no semantic
information is required beyond the environment geometry.

∗e-mail: jfhamlin@berkeley.edu

Figure 1: Museum map kiosk example [Tufte 1997].

2 Related Work

Recent work on navigation aids for multi-floor virtual environments
[Chittaro et al. 2005] has extended third-person . Their system com-
bines a technique for creating exploded views of architectural en-
vironments [Niederauer et al. 2003] with transparency to present
local and global environment structure relevant to a navigation task
in a virtual environment. The function of the third-person visualiza-
tion is to provide the user withsurvey knowledge, which the authors
describe as knowledge of relationships among locations in the en-
vironment, or a mental map. The authors identify four desirable
properties for such navigation aids that bear on 3D environments in
general:

1. Simultaneous visibility of both external and internal structure.

2. Minimization of occlusions due to multiple floors.

3. Support for third-person exploration to build up survey knowl-
edge.

4. Easy interaction.

The work presented here demonstrates the first three properties,
and while the primary interest has been to produce static images of
routes in 3D environments, the methods used can easily be applied
to the development of a system with the explicit goal of allowing a
user to interactively develop survey knowledge.

The work presented bears similarity to a recently developed system
for generating interactive maps of buildings from their AutoCAD
descriptions. It uses an exploded view of floor plans to display
routes in architectural environments [Sadhal]. A main drawback
of this system is that it requires significant user input; the roadmap
graph for each floor must be created by hand. Moreover, the result-
ing visualization can be overly schematic for some purposes, as the
internal structure of the building can only be represented as 2D lines

on an array of flat planes. Nonetheless, the current project shares
a motivating example (the map in Figure 1), and takes several cues
from this previous work.

3 Approach

I begin with a high-level overview of the approach used to generate
route maps of 3D environments. Figure 2 shows the different stages
of the system. The input includes the up vector, the height of a
navigating agent, a description of the environment geometry in the
form of a triangle mesh, and the number of floors in the structure.
There are two subsystems that feed their output to the renderer to
produce the final visualization, which will be described briefly now.

One subsystem segments the space of the environment into rooms
to produce a roadmap graph, and it is inspired by a volumetric
approach to cell-and-portal generation for visibility determination
[Haumont et al. 2003]. The environment geometry, up vector, and
agent height are used to construct a volumetric description of the
environment. From this description, a topologically 2D set of vox-
els is extracted that spans the space accessible to a floor-bound nav-
igator. A version of the 2D distance transform is applied, followed
by the watershed transform, segmenting the space and geometry
into rooms. The markers of the watershed transform and the inter-
faces between rooms (which form thegeodesic skeleton by zones of
influence(SKIZ)) become the nodes of the roadmap graph used for
path-finding. The room geometry is used to allow a user to click
on a rendered image to select source and destination rooms. The
chosen rooms are then used along with the roadmap graph to find
the shortest route between them by Dijkstra’s algorithm [Dijkstra
1959]. This route is then provided as input to the visualization ren-
derer.

The other subsystem finds the heights at which to split the environ-
ment to produce the exploded view used in the final visualization.
In addition to the input to the previously described subsystem, the
number of floors must also be provided. Given this, a technique
for generating exploded views of architectural environments is em-
ployed, yielding the heights used by the renderer in displaying the
exploded view.

Once we have a segmentation of the environment into floors and a
3D route, the final task is view optimization. The parameter space
of view direction and separation distance of the floors is searched
to minimize a score function to avoid occlusions of the route and
improve the clarity of the final visualization.

3.1 Room Segmentation

The segmentation of the model into rooms serves two purposes:
associating geometry with rooms, and extracting a roadmap. The
approach is inspired by the technique of automatically generating
cell and portal graphs for visibility determination in [Haumont et al.
2003].

3.1.1 Voxelization

Room segmentation begins by constructing a voxel representation
of the environment. A uniform 3D voxel grid is layed across the
bounding box of the input geometry, and each voxel is marked as
solid if it is intersected. My system uses a naive algorithm, testing
each voxel explicitly for intersection, but performance and quality
might be improved by employing techniques from the 3D rasteri-
zation literature [Kaufman et al. 1993]. Nonetheless, both perfor-
mance and quality of the naive voxelization method have proved
acceptable for this application.

Since we must ensure that this discretized representation maintains
all portals through which a navigating agent could pass with at least
one hollow voxel, the voxel size is set to a value proportional to
an input valueagent height, set interactively by the user through
the display of an indicator with alternating black and white seg-
ments (Figure 3) with lengths equal to the currentagent height.
The indicator is rendered atop the environment geometry in an or-
thographic view with an ArcBall interface [Shoemake 1992]. A
user may then rotate the view as desired to compare the height of
a segment to features of the environment. As this height need only
be approximate, this input method and feedback representation suf-
fice. In the implementation, the voxels are cubes with edges of
length (0.2 *agent height), ensuring that any portals greater than
0.2∗

√
2∗(agentheight) across appear as hollow cells in the voxel

grid. Such coefficients are used in several other places in the sys-
tem, and though they might be exposed to the user as further input
values, in these cases reasonable values have been supplied.

Figure 3: A vertical line with alternating white and black segments
shows the current setting of theagent heightinput variable relative
to the environment.

3.1.2 Search Space

The segmentation process proceeds by identifying a set of ‘walk-
able’ voxels, that is, for our purposes, a set of voxels that could
be occupied by the center of an agent of heightagent height. This
condition is approximated by two requirements, calledsupportand
clearance. Support requires that such a voxel be hollow, have ex-
actly one hollow voxel immediately beneath it, and a solid voxel
immediately beneath this hollow one. Clearance requires that the
voxel have a hollow voxel immediately above it. Beginning at the
highest plane of voxels, the algorithm iterates until a voxel is found
that satisfies both the support and clearance criteria and has not yet
been designated walkable. Every time such a voxel is encountered,
a flooding algorithm marks further walkable voxels using a lateral
4-connectivity. The flooding continues to neighbors that satisfy the
above walkability criteria.

To account for negotiable changes in floor height, if a neighbor
voxel satisfies the clearance criterion but not the support criterion,
the voxel immediately beneath this neighbor is then checked for
support. If this cell satisfies the support criterion, then the neigh-
bor and this cell are marked as walkable, and flooding continues
through the lower cell. In this way, the flooding may cascade down
stairs and inclines. Figure 4 demonstrates the flooding algorithm.

An additional test for support is to test the surface normal of the

 user input

Create Voxel
Representa t ion
of Environment

Find Floor
Spl i t Heights

Ident i fy 2D Layer of
‘Walkable ’ Voxels

Distance
Transform

Watershed
Transform

Environment
Geometry

Agent Height,
Up Vector

NumSplits

Mapping From
Geometry to Rooms

Roadmap Graph of
Rooms and

Room Connections

Room Select ion
In ter face

Dijkstra’s
Algor i thm

Source,
Destination

Rooms

Route

Render
Visual izat ion

Split Heights Opt imize
V iew

Final Image system output

 intermediate input/output

Figure 2: An overview of the presented system. Boxes represent operations, and capsules represent important input and output data. Arrows
denote the flow of data between operations.

surface in the lower solid voxel, failing if the normal deviates by
some threshold amount from the up vector. Since most real-world
architectural environments do not have impassably steep surfaces
adjacent to walkways without some barrier, this has been left unim-
plemented.

The voxels in the output set of walkable voxels may be under-
stood as representing one or more two-manifolds lying just above
the upward-facing surfaces of the environment. It is in the space
spanned by these manifolds that we perform room segmentation.
At this point the volumetric representation might be discarded and a
2D discrete element mesh extracted from the walkable voxels used
for all further processing. But since room geometry is desired in ad-
dition to mere segmentation, the volumetric representation is kept.

3.1.3 Distance Transform

As in the volumetric approach to cell and portal generation [2003],
the next stage of room segmentation is the application of the dis-
tance transform, which computes for each voxel its minimum Man-
hattan distance to the environment geometry. While room segmen-
tation for the visibility determination problem requires that one con-
sider the full 3D space, the space of an environment relevant to nav-
igation by a human-like navigator is merely the upward-oriented 2D
surfaces, which are homeomorphic to disks with zero or more holes.
Thus, the 2D distance transform is applied to the discrete voxel rep-
resentation of the walkable two-manifolds extracted by the previous
step.

The distance transform is an efficient algorithm for computing a
distance field over a discrete, n-dimensional domain [Rosenfeld and
Pfaltz 1966]. The result is a distance map, where for each voxel we
have the Manhattan distance to the nearest object - in this case, the
environment geometry.

 1 2

 4

 3

Figure 4: A vertical 2D slice of the volumetric representation of
the environment. Shaded cells represent solid voxels, white cells
represent hollow voxels, and blue cells represent walkable voxels.
Flooding begins at the cell marked ‘1.’ The flooding continues to
cell 2, since they are adjacent laterally and cell 2 satisfies both of
the support and clearance criteria. Cell 3 fails the support crite-
rion, but since the cell beneath it, 4, satisfies it, cell 3 is designated
as walkable and flooding continues at cell 4.

3.1.4 Watershed Transform

Figure 5: A floor of the Soda Hall model with rooms ‘flooded’ by
the watershed algorithm. The regional maximum of the distance
field in each room and the points at which the medial axis meets
the interface of pairs of catchment basins become the nodes of the
roadmap graph.

Once the distance map has been computed, the watershed trans-
form is applied. This proceeds almost exactly as in [2003], with the
following changes:

• Catchment basins are restricted to the voxels designated walk-
able.

• Instead of performing portal placement when two catchment
basins meet, a roadmap node connecting adjacent rooms is
placed as described below.

3.1.5 Roadmap Extraction

Figure 6: The roadmap graph of a floor of the Soda Hall model.
White squares denote nodes of the graph, yellow lines denote edges.

The roadmap is extracted as the watershed transform proceeds.
Room nodes are placed at the location of a single voxel in each
regional minimum of the negated distance map. A node is also
placed when two catchment basins (representing rooms) of the wa-
tershed algorithm merge. These nodes are then connected to the
room nodes of each of the meeting catchment basins.

3.2 Rendering

In this section, the design choices for the final rendering are de-
scribed. Given the view direction, floor separation distance, and
the route, a bounding box is constructed around the floors through
which the route passes. The projection matrix is set to fit this

bounding box tightly. Each floor is rendered by setting the OpenGL
clipping planes, adding a vertical translation to the modelview ma-
trix, and rendering the environment geometry. Finally, the segments
of the route that pass through the floor are rendered.

3.2.1 Axonometric Projection

To eliminate perspective distortions, an axonometric projection is
used [Niederauer et al. 2003].

3.2.2 Exploded View

The primary visualization tool used to produce output images is the
exploded view [2003]. Exploded views are a means of simultane-
ously conveying both internal and external structure. In visualizing
a path through a 3D environment, the virtues of the exploded view
are exploited in several ways. First, since a single path may pass
through any number of floors, the exploded view allows the entire
path to be visible from one view. Additionally, floors that are irrel-
evant to the path may be ommitted from the view.

3.2.3 Line Styles

The route is rendered as a solid red line. Where the route is oc-
cluded, the line width is slighly thinner and a dashed style is used.
To maintain route continuity between floors, vertical lines, drawn
thinner than the route and in blue, connect the route where it meets
the split planes.

3.2.4 Surface Properties

Each floor of the environment is rendered in a different color. Col-
ors were chosen from the ColorBrewer utility [Brewer and Har-
rower]. A simple Lambertian shader is used. A directional light
points downward to illuminate the floors, and two other lights pro-
vide fill. The result is that wallls appear significatnly darker than
the floors, with particular shading depending on orientation.

3.3 View Optimization

The final task is to set the view parameters to best depict the route.
The view parameters include view direction (azimuth, elevation),
and the floor separation distance. The goal is to minimize route
occlusion, self-intersections, visualization area, and to maximize
the visibility of changes in route orientation.

Simulated annealing is an algorithm for non-linear optimization
that has been successfully applied to several visualization prob-
lems including map layout, label placement, and route simplifica-
tion [Agrawala and Stolte 2001]. It is used here to set the view pa-
rameters. Simulated annealing requires two problem-specific func-
tions: a neighbor function for generating new states from old ones,
and a score function that gives a score to a given state.

3.3.1 Neighbor Function

The neighbor function generates a new parameter vector by ran-
domly perturbing the current parameter values. First, one of the
parameters is chosen at random with uniform probability. An offset
o is then generated from a geometric distribution. The parameter
space is discretized, so the current value of the selected parameter
is randomly either incremented or decremented byo discrete steps.

3.3.2 Score Function

Here the score function used for view optimization is described
in detail. The score functionS(p) of the parameter vectorp is a
weighted sum of four terms

S(p) = w0 ∗ O(p) + w1 ∗ I(p) + w2 ∗ A(p) + w3 ∗ ps (1)

whereO, I, andA are functions of the parameters, andps is simply
the separation distance component of the parameter vector.

• Path Occlusion

The functionO(p) gives the ratio of occluded route pixels to
the total number of route pixels. If no route pixels are drawn
at all, the function returns 1.

O(p) =

{

1 if RouteP ixels(p) = 0
OccludedRoutePixels(p)

RoutePixels(p)
otherwise

The system calculates RouteP ixels(p) and
OccludedRouteP ixels(p) using the OpenGL occlu-
sion query extension, which reports the number of fragments
drawn by a set of primitives. First, two OpenGL occlusion
query objects are generated. The framebuffer is cleared,
the modelview and projection matrices set according to
the parameters, and the first query is begun. In this query,
only the path is rendered. The query is then ended. Next,
the environment geometry is rendered, preparing the depth
buffer for the next query. The depth function, which specifies
what comparison test must be passed to allow a fragment
to be written, is set toGL_GEQUAL. Thus, only occluded
fragments will be drawn. The second query is begun, the path
drawn a second time, and the query ended.

As a potential optimization, these queries are initiated at the
start of the evaluation of the score function, but the results
are not requested from OpenGL until all other components
of the score function have been calculated. After the queries
are made,glFlush() is called to force the execution of any
buffered commands.glFlush() does not block, but tells
the driver to execute buffered commands in finite time, allow-
ing for as much CPU/GPU concurrency as possible between
issuing the queries and requesting their results.

• Path Self-Intersection

The functionI(p) returns the number of intersections that
occur in the projection of the route segments in image
space. The view and projection matrices for the parameter-
prescribed view are constructed and used to map the segments
into image space. Intersections are counted by an efficient
sweep line algorithm [Bentley and Ottmann 1979].

• Angle Deviation

The functionA(p) returns the average squared difference be-
tween the angles adjacent route segments make in 3D and the
angles they make in their 2D projections in image space:

A(p) =
1

n − 2

n−1
∑

i=1

[arccos(
pvi−1 − pvi

‖pvi−1 − pvi‖
· pvi+1 − pvi

‖pvi+1 − pvi‖
)

− arccos(
vi−1 − vi

‖vi−1 − vi‖
· vi+1 − vi

‖vi+1 − vi‖
)]2

where thevi are the vertices of the route segments and thepvi

are thevi projected into image space. This measure could be

improved by weighting the error terms by the lengths of the
adjoining segments.

• Separation Distance

The floor separation distance is minimized as a proxy for vi-
sualization area.

4 Results and Discussion

Figure 7 shows two maps generated by the system.

Figure 7: Maps of routes rendered by the system. A route on a floor
of Soda Hall (top). A route between two floors of a Quake 3 map
(bottom).

The approach is largely successful - rooms are identified well, es-
pecially in traditional architectural environments such as Soda Hall.
The optimization scheme almost always eliminates any occlusions
of the route, and keeps large turns visible.

The main flaw in this approach is the direct use of the roadmap
graph extracted during the watershed algorithm for the rendered
route. Figure 8 shows how the edges of the graph may intersect

environment geometry. Future work will address this issue with a
more in-depth look at route-generation.

A second issue is color choice. While floors are distinguishable, the
color of the vertical connector between routes on different floors
can easily be confused with the floor surfaces. Additionally, parts
of floors distant from the route clutter the view and contribute to
confusions about depth and height.

Figure 8: Because the roadmap graph is not guaranteed to avoid
obstructions, intersections with the environment geometry can oc-
cur when it is used directly for route rendering.

5 Future Work

Given the breadth of the system, there is much room for enhance-
ment. Of high importance is further improvement of the generated
roadmaps, which have no guaranteed quality. While the currently
produced graph accurately represents room connectivity, its edges
do not clearly express navigational cues. Worse, they may inter-
sect environmnet geometry, since there is only one node per room.
Further research into this problem will begin by formalizing the
roadmap problem for 3D environments.

Research into rendering styles that both improve performance of
the cognitive tasks associated with reading routes is required. Cur-
rently, the segmentation of geometry into rooms is only used to al-
low picking in the user interface. It may also be used to separate not
only floors in the exploded view, but rooms as well. Different ren-
dering styles might be used for rooms depending on their relation
to the route or other properties. Finally, additional view parame-
ters might be exposed to the optimization scheme and the energy
function refined.

Finally, integrating minimal semantic information could greatly im-
prove the results of the system. Future work will include using floor
maps to match semantic objects with locations in the 3D model to
improve room segmentation and add automatic support for eleva-
tors.

References

AGRAWALA , M., AND STOLTE, C. 2001. Rendering effective
route maps: improving usability through generalization. InSIG-
GRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 241–249.

BENTLEY, J. L., AND OTTMANN , T. A. 1979. Algorithms for re-
porting and counting geometric intersections.IEEE Trans. Com-
put. 28, 9, 643–647.

BREWER, C., AND HARROWER, M. ColorBrewer.

CHITTARO, L., GATLA , V. K., AND VENKATARAMAN , S. 2005.
The interactive 3d breakaway map: A navigation and examina-
tion aid for multi-floor 3d worlds. InCW ’05: Proceedings of the
2005 International Conference on Cyberworlds, IEEE Computer
Society, Washington, DC, USA, 59–66.

DIJKSTRA, E. W. 1959. A note on two problems in connexion with
graphs.Numerische Mathematik 1, 1 (December), 269–271.

HAUMONT, D., DEBEIR, O., AND SILLION , F. 2003. Volumetric
cell-and-portal generation. InComputer Graphics Forum, Black-
well Publishers, vol. 3-22 ofEUROGRAPHICS Conference Pro-
ceedings.

KAUFMAN , A., COHEN, D., AND YAGEL, R. 1993. Volume
graphics.Computer 26, 7, 51–64.

NIEDERAUER, C., HOUSTON, M., AGRAWALA , M., AND
HUMPHREYS, G. 2003. Non-invasive interactive visualization
of dynamic architectural environments. InI3D ’03: Proceedings
of the 2003 symposium on Interactive 3D graphics, ACM, New
York, NY, USA, 55–58.

ROSENFELD, A., AND PFALTZ , J. L. 1966. Sequential operations
in digital picture processing.J. ACM 13, 4, 471–494.

SADHAL , N. Master’s thesis.

SHOEMAKE, K. 1992. Arcball: a user interface for specifying
three-dimensional orientation using a mouse. InProceedings
of the conference on Graphics interface ’92, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 151–156.

TUFTE, E. R. 1997.Visual Explanations: Images and Quantities,
Evidence and Narrative. Graphics Press, February.

TUFTE, E. R. 2001.The Visual Display of Quantitative Informa-
tion. Graphics Press, May.

