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Abstract 
 
This paper will explore the potential for a generalized 

animation library and user interface scheme to facilitate 

the understanding of geospatial datasets as they change 

over time.  By creating an easy way to (1) load, annotate, 

and interact with shapefiles (a proprietary GIS format 

developed by ESRI), (2) animate and morph complex 

polygons across shapefiles in a time series, and (3) 

integrate this functionality with popular mapping APIs 

(such as Modest Maps and Google Maps), a GIS 

visualization framework can be created to assist users in 

identifying patterns and trends in spatio-temporal data.  At 

the root of this problem is the need to find a good way to 

match polygons across shapefiles, and to solve the Polygon 

Vertex Matching problem, one of the most important 

underlying problems of creating visual changes between 

sets of polygons in a display. There currently does not exist 

any good way of presenting the changes of two areas 

represented in shapefiles because of the very complex 

nature of the polygons that fail most matching criteria of 

current algorithms. As a result morphing shapes (tweening) 

Figure 1 User interface enables shapefile tweening, allows for layer visibility interaction, and provides basic pan and zoom functionality. 

 

Figure 2 Tween of a representative sample polygon 

 



 

is reduced in most visualization packages to simple tweens 

between regular well known shapes like triangles or 

squares and is currently simply used in visualizing scatter 

plots or similar displays. Visual morphing or tweening 

would be of great importance in understanding changes in 

physical areas that are represented by complex polygons in 

shapefiles.  In addition to a proposed Flash-based UI, this 

paper presents an algorithm that achieves a good vertex 

matching between sets of polygons without making 

serious assumptions about the properties of said shapes 

and that reduces vertex matching artifacts. 

 

Introduction 
 

Shapefiles and GIS Software 

Shapefiles [1] currently represent the most ubiquitous 

format used to store, retrieve and visualize map data and 

spatial features. Large collections of shapefiles exist in a 

variety of data arenas and can store spatial and attribute 

data about political, economic, ecological, transportation, 

and parcel information, among other things. Though these 

shapefiles represent spatial information as a snapshot in 

time, many of these shapefiles exist among a collection of 

other similar shapefiles corresponding to a different date 

as part of a time series (weekly, monthly, yearly).   In this 

scenario, it makes sense for GIS technologies to provide a 

way in which to visually represent these changes over 

time, given that the most important properties of shapefile 

records are the shapes of the actual regions themselves. 

Ott and Swiaczny note in their book on Time-Integrative 

GIS that “a crucial motivation for the development of time-

integrative GIS techniques is the fact that enormous 

amounts of data have been collected in the last decades by 

census offices, research projects, and not the least 

companies, which can be revaluated and reused” and that 

there are not simple ways to visually display “the forest 

boundaries between 1850 and 1950” [2].   Simply 

observing the overlap of regions between two shapefiles 

can make it difficult to interpret shape differences 

between the overlaid polygons, and if more than two 

shapefiles are considered the transitions become nearly 

impossible to understand or represent.  Many GIS experts 

hold that "animation can be used as an exploratory tool to 

detect similarities or differences in distribution within a 

series of maps. This is especially possible when one can 

interactively access the individual frames in an animation 

and quickly switch between individual maps or map 

sequences [3]." 

 
Tweening 

Tweening, an important tool in the field of visualization, is 

the process by which one image is transformed into 

another image by generating intermediate frames 

between the two to give the appearance of a smooth 

transition. While the concept of animation is not by any 

means new to visualization, techniques for the animating 

of more complicated shapes – those for which no simple, 

underlying structure (table, tree, scatter plot, etc.) exists – 

have not been well developed. Polygon tweening is one of 

the remaining problems to be solved efficiently and 

correctly for complicated shapes. Some complex morphing 

capabilities exist in the newest version of Flash, but these 

capabilities rely upon ‘hints’ given by the programmer, and 

do not work well for polygons with large vertex, which are 

typical in shapefiles.  

 

Related Work 
 
Existing Spatio-Temporal Data Visualizations 

From the GIS perspective, a number of GIS applications 

have been built with some capacity for GIS animation.  

Perhaps the closest of these is TimeMap, which has 

separate Java-based and Flash-based web map viewers 

that support spatio-temporal sense-making.  The Flash-

based viewer can animate GIS files by tweening vector 

polygons, but exploratory tasks currently must be done in 

a separate Java-based viewer where data is animated by 

playing a number of successive frames which toggle 

features on and off according to a date filter.  The GeoTime 

time-space visualization framework allows users to 

interactively create their own event-based stories over 

time and animate them on demand, but in this case the 

events are point-based and do not provide for smooth 

transitions between polygons.  ESRI also has several 

desktop-based applications and plug-ins such as Arc Hydro 

and STARS that allow for basic animation of geospatial 

data.  Regarding the ability to easily view shapefiles on the 

web, Edwin van Rijkom wrote a simple library to import 

shapefiles into Flash.   

 

Existing Vertex Set Matching Algorithms 

There exist a good number of polygon vertex set matching 

algorithms in the literature but it seems that every one 
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comes with very stringent requirements on the type of 

polygons it can handle, or with exceptions that cannot be 

easily handled by shapefile polygons. Some interesting 

algorithms on this topic are: 

 

Morphing using Extended Gaussian Image [4] converts a 

convex polygon into its Extended Gaussian Image (EGI) and 

then uses this representation on both images to construct 

the intermediate values. The algorithm first computes the 

ECI of the source and of the target polygons. Next it 

matches source and target normals on the ECI circle 

creating source-target normal pairs. Then it linearly 

interpolates weights and angles between normal pairs to 

derive the ECI of intermediate steps. Finally, it reconstructs 

the convex polygon corresponding to the ECI obtained by 

interpolating the normals. This algorithm works well but 

only for convex polygons whose EGI is unique. Most 

shapefile polygons are unfortunately far from convex. 

 

Line length and inner angle interpolation [5] method uses 

the representation of the polygon as a set of lines and 

inner angles and simply linearly interpolates between this 

set for the initial polygon and the final polygon. While this 

approach has the advantage of being inherently simple and 

fast the choosing of the correct vertices when the polygon 

vertex number doesn’t match between the initial and final 

polygon make this method not applicable towards 

shapefile polygons as these are unlikely to ever match if 

the polygon shape has changed. 

 

Triangulation Algorithms [6] transform the polygon into a 

set of triangles with a skeleton link and then changes the 

triangulation from one set to another by minimizing 

‘physical force’ required to move triangles from the initial 

configuration to the final. These algorithms are perhaps 

the most promising for the purpose of guaranteeing no 

fake intersections or topological changes in the 

intermediate polygons. The problem with this algorithm 

though is the particular requirement for ‘compatible 

polygons’, namely creating a common graph of the centers 

of both polygon triangulations with the same linking 

structure which is not.  The Steiner tree problem also that 

it uses to find the final link between triangles is an NP-

complete problem so an approximation of the Steiner tree 

must be calculated. The algorithm would create much 

more movement in the matching to keep parts connected 

and non-intersecting. Still this approach would present the 

best alternative algorithm for generating polygon matching 

especially since it has the ability to best represent texture 

and texture morphing on the polygons should this feature 

be desired.  

 

Methodology 
 

Domain and Data Selection 

We decided to explore one of the many scenarios in which 

smooth-transition polygon morphing could be applied to a 

visualization problem – changes in land-use over time.  

Though we realized that the way in which land-use evolves 

doesn’t necessarily follow a smooth pattern of linear 

growth, the movement of the edges of certain polygons 

would be a much strong visual cue of geographic change 

that simply turning each data layer on and off and 

requiring the use to make the determination based on 

iterative comparisons.  We found a time-series, geospatial 

dataset for land use in Hillsborough County, Florida that 

consisted of a series of shapefiles   that had been 

generated for 1999, 2004, 2005, and 2006 from aerial 

photography.  These files were downloaded from the 

Southwest Florida Water Management District’s public 

access website and re-projected from the FL Albers 

coordinate system into WGS84 using ArcGIS desktop 

software from ESRI.  Since the dataset was quite large, only 

a subset of the land-use data – those polygons associated 

with farmlands for a small area of the county – was 

ultimately used, as a proof of concept.    

 

User Interface 

We decided to build the application infrastructure on top 

of Flash, Flex, and Flare, because of the robust support 

that Flash has for vector graphics, animation, and creating 

smooth transitions between shapes.  Several pre-existing 

technologies were integrated together to create a mapping 

interface for the land use shapefiles.  We used a pre-

existing Flash library created by Edwin van Rijkom to parse 

and display shapefile polygons in a Flex application.  To 

give these shapefile polygons some context, we decided to 

use the Modest Maps API to support map tiling, panning, 

and zooming.   Each of the polygon shapefile layers was 

symbolized, and a section was added to enable users to 

turn the layers on and off so that they could manually 

compare the differences in land use across the given years.  

Finally, upon map initialization, the four shapefiles were 

pre-loaded into the Flex application from the file system 



 

and cached in memory for quick retrieval.  Though this 

technique would not work for large sets of shapefiles, it 

worked for our purposes as a proof of concept. 

 

Polygon Matching Algorithm 

Initially, we naively assumed that it would be possible to 

use some sort of unique polygon attribute to match 

polygons from one temporal snapshot to another.  That is, 

we had hoped that a polygon from the 1999 land use 

shapefile could be mapped to a polygon in the 2004 

shapefile using some sort of unique identifier.  In reality, 

we found that typically no such historical continuity is 

explicitly recorded across spatio-temporal GIS snapshots 

(for a number of reasons), so we had to use methods for 

approximating polygon intersection.  Since we wanted to 

focus primarily on the actual polygon morphing problem, 

we developed a simple algorithm for mapping overlapping 

polygons to each other by: 

 

(1) Calculating the areas and centroids of each 

polygon, P1 and P2. 

(2) Calculating a “polygon radius,” based on the area 

such that:  

𝑅1 =  
𝐴1

𝜋
 ,   𝑅2 =  

𝐴2

𝜋
 

(3) Calculating the distance between the two polygon 

centroids: 

𝐷 =    𝑥2 − 𝑥1 
2 +  𝑦2 − 𝑦1 

2  

(4) Asserting that if D < R1 + R2, then the polygons 

intersect 

 
Figure 3 Centroid & Radius Matching (match if D < R1 + R2)  

 

Using this method, we iterated through each shapefile, and 

matched each polygon to a preceding polygon and a 

succeeding polygon if intersection was determined.  We 

stored this matching information in a data structure in 

memory so that it could be accessed quickly for the 

animation routine. 

 

Vertex Set Matching Algorithm 

The first step in matching two polygons is finding the 

minimum distance between a vertex on the initial polygon 

and a second vertex on the second polygon. This first step 

is one of the most important assumptions in this algorithm 

as a bad match here can result in very bad behavior in the 

match. Most polygons presented though will satisfy this 

property that the closest pair of points between any two 

points will represent a correct matching. Usually this can 

be thought of as the part of the polygon that stays 

unchanged or the part of the polygon that moves the least.  

 

After this pair is found, since the vertex list for both 

polygons can be thought of as a circular linked list, the 

vertices are reordered with the new pair of vertices being 

the first element in either polygon. This matching gives the 

algorithm a reference point from which to check for edge 

intersections at the level of the vertices assigned in the 

assignment problem step. 

 

Next another simple step is taken in finding the second 

minimum distance between two vertices with this second 

matching used to create an initial line from which 

distances can then be calculated by the vertex alignment 

part. The selection of this second minimum vertex is also a 

delicate task as it has a major influence over the rest of the 

code. However unlike the first step this second matching 

can be at some point changed during the course of the 

algorithm which is not true for the initial matching. 

 

With these two pairs of vertices and the list in the 

reordered fashion a distance matrix between all pairs of 

points is calculated. The appropriate changes are made to 

the original distance matrix received to simulate the value 

of the matrix after the assignment problem algorithm 

would have selected those vertices. The steps are 

subtracting the value of the matching distance m(k0,l0) 

from all the first row where k0 is the first vertex in the 

reorganized first polygon and l0 is the first vertex in the 

reorganized second polygon. The other step is similar only 

it involves creating the row and column values of the 

assignment problem for imin2, jmin2 and subtracting this from 

the matrix. 

  

The main part of the vertex set algorithm now starts, 

which runs the normal assignment algorithm with the 



 5 

same steps in changing the matrix for each iteration but 

with the following major changes: 

 

In order to preserve edge order if x is the truth assignment 

matrix: 

 

∀ 𝑖, 𝑗, 𝑘, 𝑙 𝑠. 𝑡.  
𝑖, 𝑗 ∈ 𝑉𝑃𝑜𝑙𝑦𝑔𝑜𝑛 1

𝑘, 𝑙 ∈ 𝑉𝑃𝑜𝑙𝑦𝑔𝑜𝑛 2

  𝑡𝑕𝑒𝑛 𝑖𝑓  

  𝑖 < 𝑗
𝑥𝑖 ,𝑘 = 1 

𝑥𝑗 .𝑙 = 1 ,

  → 𝑘 < 𝑙  

 

What this means, if we are looking at the matrix x, is that 

given any matching at row i at position k, there can be no 

matching in a row j unless it matches with a higher column 

number l. This condition imposes a limit on how far to the 

left or right a column j can look to improve a value in the 

assignment problem. This also imposes a limit on the initial 

population of the minimum distance to a column since not 

all free rows can reach all columns. This limitation also 

brings an important question as to whether the algorithm 

will ever finish since there is a possibility that no 

improvement can be done but in this case the algorithm 

sees that no change has been done and produces a 

temporary output from the non-matched vertex creation 

part of the algorithm. The only true property other than 

the algorithm that is kept from the assignment problem is 

that at the level of the assignment matrix no vertex is 

allowed to be matched with more than one other vertex. 
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Figure 4 Positions for assignment values given a 1 at position (i,j) 

(green – valid; red – invalid)   

 

Given a partial assignment matrix we check whether we 

can run the vertex creation algorithm, namely whether all 

current non-matched vertices are lying along an edge on 

the matching. This means that there exists no pair i,j for 

which the matching skips both the line i and the column j. 

If the partial assignment matrix doesn’t check out then we 

proceed to the next step. Mathematically the test for the 

vertex creation part can be expressed as: 
 

∄ 𝑖, 𝑗  𝑠. 𝑡.  𝑏𝑜𝑡𝑕 

 
 
 

 
 
 𝑥𝑖 ,𝑘 = 0

𝑛𝑐−1

𝑘=0

 𝑥𝑘 ,𝑗 = 0

𝑛𝑟−1

𝑘=0

  

The vertex creation algorithm creates two new temporary 

lists for each polygon. The algorithm adds both first 

vertices to the new temporary lists and starts in the top-

left corner (position 0,0) of the assignment matrix and 

works its way down from the i,j position where xi,j =1 

towards the nr-1,nC-1 position by the following pattern(we 

treat the array as if there existed xnr , nc  =1 ): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Matching a point to an edge happens by selecting the 

closest point on the edge to the point we want to match. 

The method for doing this is calculating the perpendicular 

point that crosses the line of the edge and then depending 

on which side of the segment it falls into (outside or inside 

the segment) selecting one of the endpoints of the 

segment or the actual perpendicular distance to the point. 

 

 

 

 

 

 
Figure 5 Matching a point to a segment (point – gray dot, segment – 

blue line, NewP – orange dot 

 

From these two temporary vertex arrays we can calculate 

an approximate sum or value of how good our 

approximation is by simply taking the distance between 

matching i-i pairs of points. Because of the construction of 

the temporary arrays they have the same number of 

points, that the matching is i to i, and all points are in 

order. 

 

𝑠𝑢𝑚𝑐𝑢𝑟𝑒𝑛𝑡  𝑠𝑡𝑒𝑝   

=     𝑉𝑡𝑚𝑝𝑖
1
𝑥
−  𝑉𝑡𝑚𝑝𝑖

2
𝑥
 

2
+  𝑉𝑡𝑚𝑝𝑖

1
𝑦
−  𝑉𝑡𝑚𝑝𝑖

2
𝑦
 

2
𝑛𝑛𝑒𝑤

𝑖=0

 

 

The final part of the algorithm is at every step of adding 

another part to the assignment checking whether the 

current sum is worse than the previous sum case in which 

we stop. We also check that we have not reached the 

number of vertices of one of the polygons. 

 

Algorithm speed is approximately O(n
3
) worst case 

scenario (where n = min(n1,n2) but matching needs to be 

run only once at load time of shapefiles so calculating time 

may be hidden.  Algorithm performs well when one of the 

n1 is small < 300 regardless in majority to the size of n2.  

The algorithm slows significantly when presented with 

matching two extremely large polygons n1, n2 > 1000. For 

this case in particular a special part was added to the 

algorithm to specify the maximum time that it can spend 

trying to match two polygons. If the algorithm reaches that 

time and still has not found ‘best’ solution the algorithm 

gives the last previous temporary stored array which 

represents the best approximation at the time of the 

matching.  

 

Algorithm Preprocessing of Polygons 

By inspection on the normal types of polygons that were 

asked to be matched certain pre-algorithm changes to the 

program appeared to work very well in helping the 

algorithm give a good match in most cases: 

 

Figures that suffer translation in the physical image can 

provide very bad initial data should vertices from opposite 

sides overlap because of the transition. Also in most cases 

position of the object should not affect how it changes its 

shape so the first pre-processing option is subtracting the 

centroid values of both polygon at the start of the 

algorithm and adding them back after the matching has 

happened. This will center both polygons on the same spot 

to better allow for matching. 

 

In the same way that translation can be partially taken out 

of the equation of matching by subtracting the centroid of 

the polygon, another important part of preprocessing is 

relative scaling (scaling the polygon by a factor of the ratio 

of areas of the two polygons). This procedure will make 

both polygons be the ‘same size’ and will allow for a much 

better match in general. In the code the relative scaling 

can only be turned on when selecting centroid removal 

also because scaling would bring some questions of what 

point remains the same (the top-left corner of the 

bounding box, the centroid of object, etc.). In the Relative 

Scaling case with centroid removal the scaling location is 

well defined and does not need to choose any options. 

 

Since the preprocessing mentioned above isn’t always the 
best approximation, all three possible versions are 
computed (no preprocessing, centroid subtraction only, 
centroid and relative scaling)  and the best distance 
between groups of given vertices is kept as the best 
solution. The general percentages of success between the 
three procedures seem to be 10% no preprocessing, 10% 
centroid subtraction and 80% centroid and relative scaling 
in selecting the best solution. This suggests that a simple 
acceleration of the algorithm with the penalty of 
correctness might be to simply run all polygons with the 
option of centroid and relative scaling. 
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Animating the Map 

Once the vertices of all of the matched polygons were 

recalculated above, Flare’s Sequence and Transition classes 

were used to orchestrate the tweening. Since the 

calculations were all done in the matching stage the 

rendering of the tween is a simple O(n) operation which 

allows for great visual effect by providing the capability of 

tweening large sets of polygons simultaneously. 

 

Results 
 

Using the methodology described above, we were able to 

match and tween polygons across shapefile snapshots.  

Flare had no trouble tweening hundreds of polygons in 

parallel, which was very promising, and the polygon 

animation seemed to be a much easier way to detect 

polygon shape changes – especially subtle changes – as 

compared to turning layers on and off.  Further user 

testing would be needed to confirm this. 

 

User Interface 

As described in the methodology and as seen in Figure 1, 

we created an interactive, web-based map viewer with a 

basic navigation structure (panning and zooming), the 

ability to turn the time-series shapefiles on and off, and 

the ability to request the application to match and tween 

polygons.  Though the sample shapefiles were small 

(approximately 120 polygons each), they loaded and 

rendered as sprites (Flash-based vector shapes) quite 

quickly.  Flash event handlers were used so that as the map 

panned and zoomed, the polygon sprites were re-factored 

and synchronized with the underlying base map tiles. 

 

Polygon Matching 

We found a number of challenges in matching polygons, 

which are beyond the scope of this paper, but which 

provide ample opportunities for future work.  First, we 

found that, not surprisingly, our intersection heuristic was 

not sufficient for determining polygon intersection and a 

much more comprehensive algorithm should be used.  This 

a) 

b) 

c) 

Figure 6 Matching polygons a) no preprocessing b) centroid subtraction c) centroid and relative scaling 



 

became apparent when we observed that polygons were 

actually tweening to adjacent, rather than overlapping 

polygons from the subsequent Shapefile in the time series.  

One way in which this could be addressed would be to 

incorporate the polygon union and intersection functions 

that are part of the open-source Java library, JTS [7]. 

Another issue that we noticed was that a one-to-one 

polygon matching algorithm was overly simplistic.  There 

are in fact cases where an animation would be better 

characterized by splitting a source polygon and having it 

tween to several destination polygons, for example in the 

event that a section of land is bisected by a new roadway.  

Similarly, there are cases where several source polygons 

should tween to a single destination polygon, for example 

if several parcels of land were incorporated into a larger 

area.  Hence, many-to-many polygon matching support 

should be incorporated into the library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vertex Set Matching 

The polygons that were processed and tweened from the 

shapefiles varied in sizes and shapes, so we were able to 

gain a fairly wide range of the possible polygon tweening 

scenarios with which the procedure had to contend.   

There were some performance issues when matching one 

large polygon (over 3,000 vertices) to another large 

polygon, and a strategy would be needed to address 

certain Flash timeout errors that occurred when processing 

large geometries.  The algorithm implementation itself, 

however, was quite successful in creating smooth, natural 

transitions between polygons.  We observed various 

shapes in order to determine ‘errors’ in the morphing.  

Note that while the algorithm guarantees that there will 

not be any edge crossing in the initial step of assignment, 

in the non-matched vertex problem this assumption can be 

broken.  Below is a set of polygon tweens implemented 

with the algorithm described in the paper which all 

presented different challenges: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Sample results a) tweening a hole into a polygon b) matching 7(5:2)-7(2:5) vertex polygons produces 10 vertex polygons  
c) matching a test polygon with a real polygon 

 

a) 

b) 

c) 
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Discussion 

 

The matching algorithm discussed in this paper has been 

implemented as a class object in the Flare Visualization 

toolkit [8]. The data is read in from the shapefile using a 

modified version of the Van Rijkom libraries [9] for 

shapefiles. The class was created to extend previous 

existing classes in order to allow for other tweens like 

color, rotation, and even embedding to be done as simply 

as using another common shape like a rectangle or circle. 

 

From this proof of concept, it seems feasible – through (1) 

improved polygon matching heuristics, (2) a batch-

processing of vertex matching between large polygons, 

and (3) some indexing strategy to handle large shapefiles – 

to have a generic framework by which shapefiles can be 

animated across temporal snapshots in a generic manner.  

These animations, in conjunction with addition 

visualization tools, will greatly improve the way in which 

spatio-temporal datasets can be explored. 

 

Future Work 
 

Tweening Enhancements 

While the algorithm to morph simple polygons to other 

polygons was completed, much of the theory that was 

thought of for this project initially never managed to get it 

to the code so a short description of the rest of the 

algorithms that were developed will follow now and will 

end with algorithms that need to be developed for better 

tweening but that were not thought of during the time of 

the class project: 

 

Tweening polygons which contain holes represent are a 

surprisingly important part of shapefile tweening, as 

almost all polygons have some hole or another. The 

algorithm to render the holes already exists in the code 

and consists of rendering the entire object in one single 

pass but by creating ‘cuts’ that reach the holes. The 

algorithm for the holes would start by matching the outer 

polygon shape to final polygon. The holes would then be 

‘moved’ to the final position by weighted distance sum 

with closest vertices getting weight based on the inverse of 

the distance to a point. We would find the matching 

between holes in final polygon by simple polygon matching 

algorithm (the centroid radius approach described in the 

paper). We create an initial adding of the holes into the 

representation of the polygon by means of the special cuts. 

While there are still holes not matched we find the closest 

centroid to an edge and connect the centroid (the 

intersection with the edge of the hole) to the edge of the 

outer polygon and then repeat making sure to now 

consider the hole as part of the ‘outer’ polygon. This 

algorithm is O(h
2 

n) where h is the number of holes and the 

n is the number of vertices on the outer polygon. Finally 

we match the connecting cuts to the final polygon again by 

weighted distance sum.  

 

Tweening many to many polygons will probably represent 

the final step in a polygon matching algorithm as this 

would depend on all other parts working and itself 

recursively narrowing the number in the groups of 

polygons that need to be matched. We match the convex 

hulls of the groups of polygons one to another. The convex 

hull around the group of ‘initial’ polygons creates a ‘hole’ 

the inside of which represents the empty space between 

the all polygons. This ‘hole’ is moved by weighted distance 

sum to final position. The moved initial convex hole is 

matched to final convex hole (problem is recursive but 

even in a worst case scenario the polygons in a group 

decrease by one until it represents a simple matching) An 

algorithm is still needed to keep track of what the hole 

represents empty space or polygons (hole’s within hole’s 

are actually polygons) and algorithm is also needed to 

reconstruct the matching of vertices from all intermediate 

steps. 

 

Selecting between best preprocessing technique based on 

topological errors not the linear sum. This would allow for 

a much more ‘correct’ representation of the polygon 

tween but no simple algorithm was thought of. 

 

Polygon Matching Enhancements 

In addition to tweening enhancements, a better way of 

matching polygons to one another must be developed (as 

explained in the “Results” section), perhaps using the 

open-source libraries available from the JTS Topology 

Suite.  A many-to-many polygon matching data structure 

must also be implemented to better mirror the way in 

which geometries change in the real world.  

 

Memory Management and Performance Enhancements 



 

Performance-wise, to make this type of generic application 

scalable, a methodology must be developed to manage 

large shapefile datasets.  It is impractical to load millions of 

records worth of shapefiles into memory, so the ability for 

the tool to support a one-time batch process by which 

shapefiles are indexed and matched.  With the matching 

and indexing already complete, loading the necessary 

“PolySprites” on demand will be trivial for Flash. 

 

Data Exploration Enhancements 

Finally, we would like to expand this tool so that it is not 

simply an animation tool, but also a data exploration tool.  

Since we are already calculating areas, centroids, and 

polygon mappings across shapefiles, it follows that we 

should also support the user’s ability to ask spatial 

questions and perform spatial queries to answer questions 

like, “In which direction and to what extent has the 

population of City A grown over the past 30 years?”, “How 

did the river affect various flood zones during the last few 

weeks of rainfall?”, or “How has the expansion of this 

roadway affected development in this area?” (which are all 

questions that Ott and Swiaczny identify to be difficult to 

do with the existing GIS frameworks). 
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