
Releviz: Visualizing similar search results in two dimensions

David Eitan Poll
University of California, Berkeley

depoll@berkeley.edu

Jeff Bowman
University of California, Berkeley

jeffbowman@berkeley.edu

Abstract

We present Releviz, a system that provides a two-dimensional
interface for selecting and displaying multivariate data records.
Releviz describes a two-component system: A standardized
constraint language for expressing search parameters specific to a
particular data domain, and for evaluating those search
parameters; and a two-dimensional display field of the search
results, in linear or radial orientation, in which relevance maps to
one of the major coordinate axes and a grouping function maps to
the other. We provide two implemented grouping functions,
weighted average, and a constraint-based clustering algorithm.
We document and provide an internal evaluation of this system,
including its sample implementation.

Keywords: Search, filtering, relevance, constraint

CCS: H.5.2: User Interface

1 Introduction

Modern user-centric applications, especially those on the internet,
allow users to sift through massive amounts of data to find

information useful to them. From search engines (Google) to real
estate listings (Zillow), data filtering and searching are extremely
common tasks for information workers of all sorts.

When using search engines with highly domain-specific data,
such as Zillow’s “Home Postings” search engine (See Figure 1) or
PCWorld.com’s laptop review browser (See Figure 2), users are
subjected to a common pattern: given the large set of results, a
user must filter down the results by adding constraints to their
query. The user then is subjected to an iterative process of more
tightly constraining a query until either their desired results are
located or they have over-constrained the data, leaving him with
too few results, and forcing him to relax his constraints in order to
find results that closely match his criteria.

This iterative filtering process that users must perform when
searching large data sets is time-consuming and impractical for
users. Much of this stems from the fact that users rarely think in
terms of hard constraints and filters, but rather in terms of
“desires.” As a result, the constraints they set are often more
representative of their “ideal” results rather than their strict
requirements. In fact, especially with data domains where perfect
matches are unlikely, users are more often interested in “near-
misses” to their queries. These “near-misses” are results that

Figure 1: Zillow.com’s “Home Postings” search engine. Note the filters on the left that allow users to constrain their queries based on

parameters such as price, number of bedrooms, and square footage in search of a home that meets their needs.

Figure 2: PCWorld.com’s notebook review browser. Note that users can “refine their searches” based on a set of criteria. Selecting a

criterion filters out laptops that do not meet the criteria. In this case, the user has filtered down to laptops between $500 and $1,000, but
any laptop that costs $1,001 will be excluded from this list.

either meet most of their constraints or those that nearly meet a
particular constraint. For example, a prospective home-buyer
might constrain a search for home to a maximum price of
$100,000, but if a home showed up on the market that otherwise
met their needs and was listed for $101,000, the home-buyer
might still be interested in that home.

In these types of situations, users are far less interested in strictly
constraining a query to filter down results, but are instead
interested in retrieving the most relevant results based upon their
queries. In this paper, we propose Releviz, a pair of visualizations
that helps users discover the “near-misses” based upon relevance
for their queries, and that can be applied across varied data
domains with multiple query constraints. First, we will explore
works related to this problem. Next, we will explore the
approaches we have taken in developing these visualizations. We
will then present Releviz and discuss its merits and weaknesses.
Finally, we will suggest future work within the scope of Releviz.

2 Related work

We build existing approaches, combining the results of constraint-
based mapping, dynamic queries with direct manipulation, and 2D
graphical representation to search results. The original interface to
dynamic query, the Dynamic Homefinder [Williamson and
Shneiderman 1992], provides a prototypical search function by
which constraints are controlled and instant updates appear on a
geographic map display. Another early example of constraint and
relevance search is the Dynamic FilmFinder [Ahlberg and
Shneiderman 1994], that seeks to generalize results display in a

2D grid. We work extensively from this principle, and from the
principles of direct manipulation and incremental refinement that
the system embodies.

In addition, the Attribute Explorer [Smith 2001] introduces a
multiple-histogram and data-brushing approach to the problem of
selection across multiple constraints, and the example produced
with the Attribute Explorer also lists perfect matches along with
records that fail one or more constraints; however, the output of
this constraint matching interfaces is merely an ordered list, and
does not allow for graphical output and relevance comparison.

Finally, Mann and Reiterer [1999] offer a system for visualizing
text search results through a scatter plot with relevance as one of
the core axes; however, this system provides for text search
results instead of constraint satisfaction, and the scatterplot
provided has no accounting for clustering algorithms of any form,
instead suggesting individual keywords on each axis.

3 Methods

We approached the problem of visualizing near-misses to a query
from two angles we considered to be important for users trying to
browse filtered data. First, we explored constraint satisfaction in
order to assign a relevance to each of the data points in the given
data set. Next, we considered how near-misses might most
appropriately be grouped so that users can see why data points are
failing to meet their constraints.

Our methods assume that we have been given a “domain data
set,” which describes both the data points in the domain and the
set of constraints that can be placed upon that data. With these
two sets of information (constraints and data points), we can
derive a general means for visualizing near-misses for queries
over the data.

3.1 Constraint satisfaction

We define a constraint as an arbitrary weighted fitness function
over a data point. As such, constraints consist of two main
components:

1. Weight – an arbitrary real-number value that will be
used in conjunction with other constraints.

2. Fitness function – an arbitrary function that returns a
value between 0 and 1 indicating how well the
constraint has been met by the data point the function
takes as a parameter., where 1 indicates that the data
point meets the constraint.

We have also identified two main types of constraints:

1. Discrete – constraints that have either been met or
violated by a particular data point. Discrete constraints
are characterized by piecewise fitness functions, usually
only returning a 0 or 1. Examples of discrete
constraints for searches for a laptop might include “has
a webcam” or “has a solid-state disk.”

2. Progressive – constraints that may be partially met by
“close” values. Progressive constraints give us more
information about how close a data point is to meeting
the constraint. Often, progressive constraints have
fitness functions that return 1 for all perfect matches,
then decay in value as the data points drift further away
from the criteria of the constraint. Examples of
progressive constraints for home postings searches
might include “distance from a place” or “price range.”

Traditionally, constraints would be used to strictly filter the data
set, where only data points that meet all constraints (with a fitness
of 1) are included in the result set. For these types of queries,
weight has no bearing.

We attempt to use these constraints to derive a scalar “relevance”
value for each data point. We define relevance to be a weighted
average of the fi ess of the datn ta point over all constraints:

ሻܽݐሺ݈݀ܽ݁ݎ ൌ
∑ ௦௧௧௦אሺܿ,ݏݏ݁݊ݐ݂݅ ሻܽݐܽ݀ ൈ ሺܿሻሻݐ݄݃݅݁ݓ

∑ ௦௧௧௦אሺܿሻݐ݄݃݅݁ݓ

This relevance calculation gives us a scalar between 0 and 1
indicating the overall fitness of a data point to a query. By
mapping this value to a visual variable, we can indicate how well
a particular data point matches the query.

3.2 Near-miss grouping

In addition to visualizing the relevance of a data point to a user’s
query, we attempt to visualize the reasons for which a particular
data point received a less-than-perfect relevance score. We derive
this grouping from the constraints that a particular data point
failed to completely satisfy. To completely map these failures, we
would require an arbitrary number of dimensions, since each

constraint provides another dimension of data as to why the data
point lost relevance. It is always a struggle to try to present
something in two dimensions that would more naturally be plotted
in n-dimensional space, so we made a few attempts to
approximate the effect in a linear fashion. We have used two
different methods in our visualizations to solve this:

3.2.1 Averaging

Our “averaging” approach attempts to linearize the constraint
violations by using a weighted average of the constraints that
were violated. We begin by distributing the constraints evenly
along a number line. If only one constraint has been violated by a
particular data point, the “grouping value” is simply assigned to
the point on the number line that corresponds with the broken
constraint.

With two constraints violated, we start at the point on the number
line corresponding to the constraint for which the fitness was
lowest, then shift the point toward the next violated constraint
based upon how badly it was violated by the data point. Thus, if
two constraints were equally violated by a data point, the
grouping value would be exactly half-way between them.

We continue this process for three, four, up to n different
constraints, resulting in an “average” (loosely defined) of the
constraints that contributed to a decrease in relevance for a data
point.

For some visualizations (in our case, the “radial” visualization), it
is more useful to treat the number line as a circle, where the
“halfway point” always lies on the minor arc between the
constraints being averaged.

Whether we are working with a circular mapping or a linear one,
the end-effect of this calculation is that the grouping value starts
by mapping to the constraint that contributes the least to the data
point’s relevance (has the lowest fitness), then gets “nudged”

Figure 3: The “dartboard” of relevance used by the radial visual
mapping. Note that two data points that have the same radius
from the center of the circle have equal relevance. Thus, the

most relevant data points will be the most central ones.

toward each of the remaining constraints based upon their
contribution (or lack thereof) to the data point’s relevance.

3.2.2 Clustering

Our “clustering” approach assigns a single, discrete range for each
violated constraint. These constraints necessarily overlap, creating
a 'map' of divided regions in which each region is associated with
zero or more constraints. In this way, we can visually represent
each constraint as an undivided region of the graph, and the
constraints can logically combine in their overlaps.

We define “region fitness” to be the sum of the products of fitness
and weight for each constraint represented by the region, to
e p raints: x ress how well a data point matches this subset of const

ݏ ൌ the subset of constraints represented by a region
ݏ ك ݏݐ݊݅ܽݎݐݏ݊ܿ
region‐fitnessሺݏ, ሻܽݐܽ݀ ൌ ∑א௦݂݅ݏݏ݁݊ݐሺܿ, ሻܽݐܽ݀ ൈ ሺܿሻݐ݄݃݅݁ݓ

We implement this range satisfaction problem by building a list of
regions, initially set to a single region with no representative
constraints. In this way, we can “add” a constraint-satisfying
region by specifying both the start and end regions with which to
overlap, and then dividing the region twice (see Figure 3).

To build the map and determine overlap, we do the following
process, using the entire set of data or a small representative
sample as necessary:

1. Select the “best” constraint—the one with the largest
sum of fitness values given the data, multiplied by the
weight.

2. Test each possible start and end region to see which best
fits the data.

3. Make that selection permanent (splitting the start region
and end region as in Figure 3) and loop until all violated
constraints have been assigned a location on the map.

We assign each data point to the region that has the highest
fitness. In the event of equal region-fitness, we assign the data-

point to the region with the lowest sum of weights of the
constraints it represents, ensuring that (in case of a tie) each data
point is assigned to the least-specific region that can contain it;
otherwise, data points would accumulate in a random section,
sometimes leading to improper implications about the data.

Finally, we remove regions that have zero members, and plot the
data points on the graph. In our implementation, we also added
lines to further distinguish between the data points, and provided
an equal-spacing algorithm that gives each region an area
proportional to the number of data points accumulated in it, and
prevents data points from overlapping. In the current
implementation, X-location within a region is random, but related
data points are located in the same region.

3.3 Visual Mappings

We looked at two different ways of mapping relevance to visual
variables. The first uses a linear mapping of relevance to portray
the fitness of data points. The second uses a radial mapping of
relevance to portray the fitness of data points. These approaches
are described here:

3.3.1 Linear

We attempt a “Linear” visual mapping. This mapping matches the
existing model in which search engines return results. A large box
at the top contains data points that match all constraints, to avoid a
singularity; this top box does not have a well-defined X and Y
coordinate, but instead is displayed randomly in order to assist in
estimating the number of returned results.

The y-coordinate indicates relevance, as calculated before: as the
data points are less and less relevant, they fall further down on the
chart.

Our x-coordinate mapping provides two separate functions: To
distinguish data points from one another, and to create a spatial
grouping for results that are “related”. In the linear visual
mapping we implemented, we avoided the problem of redundant
encoding by using the clustering algorithm above; using weighted
averages in the linear function is not advisable, as a lack of “wrap-

dp1

dp2

dp3 dp4

Figure 4: The region-splitting algorithm. The first line
shows the initial map with one region placed, representing
constraint c1. The second shows the five regions resulting

from some placing c2 with some overlap, and the third
shows five regions resulting from placing c2 fully

overlapping c1.

Figure 5: The linear visual mapping, displaying the clustering
system. Point dp1 matches all constraints, and is displayed in the

top box. Point dp2 and dp3 are grouped because they violate
similar constraints, but dp3 and dp4 are the same distance from

the top gray box because they are equally “relevant”.

around” ensures that most weighted averages will tend to the
center of the graph.

Finally, our implementation provided for a slight random color
jitter in order to further distinguish data points during animation
and between state transitions. In our current implementation, this
is a random value assigned when the data set is loaded.

3.3.2 Radial

We attempt a “Radial” visual mapping. This mapping can be
envisioned as a dart board, where the bullseye represents data
points with 100% relevance. As data points move out from the
center, they are less and less relevant. In Figure 3, we
demonstrate the mapping of relevance to the radius of the data
point’s plotted location within a circle.

Specifically, for a circle of radius 1, relevance is mapped as
follows:

ሻሺ݀ݏݑ݅݀ܽݎ ൌ 1 െ ሻሺ݈݀݁ݎ

To incorporate near-miss grouping, we use our averaging
approach to derive a scalar that can be mapped to the angle (θ) of
the data point in this visualization. We will give each constraint
an equal share of the angle, then use averaging to determine
where a data point should fall. In Figure 6, we see how data
points with lowered relevance are mapped onto an angle in the
radial visualization.

It is certainly the case that the error near-miss grouping value that

is mapped to the angle may not be unique. As a result, it is
impossible to say definitively that a point with a low relevance
was caused by a violation of a particular constraint simply by
looking at its mapping to an angle. However, “near-misses” occur
most often when the relevance is high, and it is more important
that the causes for such points’ lowered relevance be clear. As the
number of violated constraints decreases, the combination of
averaging with a relevance becomes less ambiguous, making
constraint violations easier to interpret. In the example in Figure
6, dp2 can be reliably said to have violated constraint c2 because
it lies close to the center and in the middle of the angle range
given to c2.

3.4 Animation

Animation plays an important role in making Releviz effective.
Our approach uses animation primarily for the purposes of
helping users understand how changes to their constraints affect
the relevance of the data points they are browsing. As users
adjust constraints, they will be able to see the data points moving
to their new locations in the visualization in real time, giving them
valuable feedback on how the constraint impacts their query
results.

Changes to constraints come in to forms, each of which may be
animated differently:

• Discrete – these changes to constraints usually involve
changing discrete values, such as the allowed categories
of laptops or types of homes in a query. In this case,
users would rarely make continuous gestures, where
they would expect to see the visualization changing in
real-time with their adjustments. Animation of discrete
changes to constraints are handled by smoothly
transitioning (accelerating and decelerating) each data
point from its original position to its new one.

Figure 6: Demonstrates how data points are mapped based

upon the constraints they violated. Here, dp1 has violated no
constraints, so its angle component is undefined. Dp2 has

violated only the c2 constraint. Dp3 has violated both the c1
and c2 constraints. Dp4 has either violated c2 and c7, c1
severely, or c2, c1, and c7 in equal amounts. These error

grouping scores are not unique, but usually items with the same
error score and radius pairing will have violated similar

constraints.

• Continuous – continuous changes to a constraint are
changes where the user will expect to see changes to the
visualization during their gestures, such as sliding a
slider. Such changes must occur rapidly, and
accelerating and decelerating data points during such
animations keeps the visualization from reflecting the
user’s changes in real-time. Thus, user gestures to
change continuous constraint parameters are animated
by rapidly updating the visualization to always reflect
the user’s most recent input. Large changes that would
disorient the user are treated as discrete, and are thus
fully animated.

4 Results

Both the linear and radial visualizations were implemented using
Adobe Flex 3.0 (Adobe, Inc.) and Flare (Flare | Data Visualization
for the Web), a visualization toolkit for flash-based user
interfaces.

We designed a common data set object model in ActionScript for
use with Releviz, and which both visualizations (linear and radial)
would be able to consume. We then implemented two different
data sets that would allow our visualizations to operate on real-
world data, and provided a reasonable set of constraints for each
that users would be able to adjust. The first kept a local copy of
laptop review data from PCWorld.com. The second used Zillow’s
Postings API to fetch data about homes for sale in a particular

county. Each of these thus represented real data for which
filtering search engines were already in existence.

We also provided a common interface whereby constraints can
provide UI, allowing the same data set to be reused with multiple
visualizations.

Both visualizations are interactive, allowing users to see changes
to their query reflected in real time through animation and
providing some details about the individual data points to users in
the form of tooltips or click handlers.

4.1 Linear

The linear visualization was an implementation of the linear
mapping described above; the implementation tested uses the
clustering grouping function also described in this paper. Figure 7
shows the final product in action.

4.1.1 Analysis

In this implementation of the user interface, the linear interface
demonstrates a user interface consistent with the specification we
described, but with significant room for further refinement.

Weaknesses:

• In the current implementation, regions are not labeled,
making it difficult to discern how the search results are
grouped.

• Also, in the current implementation, it is difficult to
determine which series of regions represent which
constraint. It would be a simple extension to allow a
user to select a constraint and see a color or label
marking each region representing that constraint.

• There is currently no way to graphically see how much
a given constraint was violated. A good candidate for
this display would be to provide a quantitative encoding
(e.g. color saturation or size) for each data point when
the chosen constraint is selected or highlighted.

• Animation does not perform as strongly as in the radial
grouping, because the horizontal (grouping) encoding
cannot wrap around the way the angular grouping
encoding does in the radial graph.

• Within each group, there is no horizontal ordering,
making the lines or other region-distinguishing marks
important for the interpretation of the graph. In the

future, X-ordering within regions may encode more
details about related data points.

Strengths:

• Unlike the radial implementation, the linear
implementation gives the same amount of horizontal
space to data points that are very near misses, due to the
center point of the circle representing the perfect
constraint matches.

• The current implementation provides space for many
perfect matches, unlike the current implementation of
the radial graph. This, however, is a byproduct of these
particular implementations; the radial graph is capable
of reserving a threshold radius, and by reducing the size
of the gray box, the implementation of linear gains this
same “singularity” problem.

• The current implementation provides a unique
grouping; groups that appear in the same region are
absolutely similar, as opposed to the “false encodings”
in the radial visualization.

• In the current implementation, data points are expressly
prohibited from overlapping.

• The current visualization matches existing web search
engines such as Google, where the most relevant results
are listed at the top of the page. This should reduce the
learning time involved in understanding the input.

4.2 Radial

The radial visualization was an implementation of our radial
approach as described above. It uses a pie chart to visualize the
constraint boundaries and a circular layout for plotting the data
points. Figure 8 shows the radial Releviz visualization in action.

The radial visualization’s animations occur over polar
coordinates, so data points do more than simply move to the
correct location. Rather, they follow an appropriate spiral to
reach the correct radius and angle. This allows users to see how
the radii and angles would have changed had each step between
their constraint changes been made as well. This form of
animation also helps users locate similar results, which will tend
to move together as constraints change. This effect is
immediately perceptible during animation using the radial
visualization.

Figure 7: The linear visualization, running using the laptop data. Note the gray box at the top for matching constraints, and the
vertical lines separating regions. The lines of data points are due to exclusive use of “discrete” constraint functions.

Figure 8: The Radial Releviz visualization in action, operating on live Zillow home postings data. Here, we can see that there are some
perfect matches and a number of results that violated the distance, lot size, and price constraints. Also shown is the tooltip for one of the

data points, where the calculated relevance is shown alongside the details for that data point.

4.2.1 Analysis

The radial visualization is by no means flawless, and there is
certainly room for improvement. It has a number of strengths and
weaknesses when visualizing near misses:

Weaknesses:

• Misleading segmentation of constraints – the radial
visualization as it is currently implemented uses what is
essentially a pie chart to draw the division of the circle
into the constraints for the data set. Unfortunately,
these give the user a false sense of the causes for
lowered relevance when multiple constraints are being
violated. This primarily occurs because the user has no
sense that the wedges of the circle are anything but
distinct categories into which data points may fall. A
more appropriate coloring and rendering of this division
is worth exploring, and might involve gradients to give
the user a sense that these regions blend with one
another.

• Visibility of relevant data – the radial visualization
currently offers less overall space to more relevant data.

Any data points that fully match a query will overlap at
the center of the visualization, while the concentric
circles with small radius offer little additional space for
placement of the near misses. A possible remedy might
be to reserve a larger region in the center for perfect
matches to a query, then use the remaining radius
(outside of the inner circle) to map relevance.

• Difficulty in comparison – small differences in radius
are very difficult to detect if data points are not near
each other. In Figure 8, it is unclear whether the data
points strewn across the green, red, and purple wedges
all share the same approximate relevance, or whether
they are spiraling outward. While such comparisons are
far less frequent with these types of data domains, there
may be other types of data that do warrant closer
comparison of the relevance of various data points.

Strengths:

• Centrality of high-relevance results – the radial
visualization for Releviz has the benefit of placing
highly relevant results at the center of the visualization
for users. This helps users focus on perfect matches and
near misses, while animations allow users to see how

changes in constraints bring data points to more central
locations from afar.

• Real-world analogy – first reactions to the radial
visualization in Releviz have been that the “dartboard”
analogy “makes sense” for visualizing relevance, and
making its use more familiar to users

5 Discussion

To no great surprise, the most challenging and prominent aspect
of this project was the compression of n data dimensions into a
single relevance and a single grouping value. While we believe
that our solutions are novel and advanced, we are aware that this
representation is a complex problem rooted in information theory,
and needs plenty of work.

One of the most interesting aspects to the visualizations we
developed is that data outputs incorporating “near misses” are
inherently more useful when the user overconstrains his search
results, allowing him a small or empty overlapping set that
matches all constraints, and instead starting with a very small
optimal set and moving outward. This is a potential change in
behavior afforded by rich constraint specification and weighting
UI along with a multivariate representation of the “top” search
results.

However, in creating the visualizations, we discovered that
controlling the weight of the constraints provides wildly different
views of the same dataset and the same main constraints;
therefore, the additional power must be weighed against the
additional, arguably arcane UI presented to the user. A similar
problem in the Attribute Explorer [Smith 2001] was solved by
allowing user to order the constraints by personal priority,
defining an order requirement instead of a numeric weight.

The functions we provided did not provide for control, with the
exception of Price in the laptop data set could be defined as
“hard” (discrete) or not hard (continuous). Though constraints
could ostensibly be much more complex than this, our
implementation is agnostic to the calculations involved.

The data sets we tested are all richly multivariate, and numeric in
nature: They contain large amounts of data, and large numbers of
numeric or true/false fields. We did not test the repercussions of
data that contains duplicate or near-duplicate records, or data
domains that contain text data; the latter, however, could still be
expressed using a real-valued scalar between 0 and 1, and such
could still be integrated into our system.

The use of animation, an afterthought, was unexpectedly
successful with the weighted average clustering function, because
the effects of a constraint could be isolated by disabling it
(ignoring it, or setting its weight to zero) and re-enabling it.

In contrast, the linear visualization seems highly appropriate for
fixed data delivery, as (between the two) it uses space and
prevents overlap most effectively. In this way, the linear
visualization could be applicable in systems that do not have
graphics acceleration, or systems where interactivity is minimal or
where the graph specified here is output into a fixed format (e.g.
through a printer).

Finally, in observation of current trends, the creation and
development of large and richly-described datasets—notably

through XML and Web Services—will increase the need for
domain-dependent search. For instance, a set of constraints could
be generated from an XML Schema, or metadata document
defining an XML structure. Though it appears that the current tool
of choice is generic text search (such as Google), the creation of
rich cross-site datasets highlights the usefulness of this project.

6 Future work

The most obvious extension to our current work would be to
evaluate the visualization on a number of qualitative and
quantitiative factors. We did not provide for user studies or user
evaluation in this study, and we are eager to know whether users
would appreciate data to be visualized in this way, and whether it
allows them to access data faster.

To extend the visualization we offer, we seek further development
on better grouping functions to group “near misses”. For instance,
a function that better groups closely-related results at the expense
of slightly-varying relevance values could increase the usefulness
of the visualizations we present. While our current grouping
functions, clustering and weighted averaging, provide a starting
point for compressing the multivariate constraint data into a single
dimension of representation, they are by no means the best ways
to provide for data interpretation.

Though the visualizations we provide are open to limited
interactivity, additional research could provide a more space-
efficient way of “drilling down” and refining the search. In
particular, the concept of “data brushing”—graphical selection of
multivariate data on an ordered X-Y plane—could be applied to
select results.

In addition, the graphical representation can be extended into
three dimensions, and by giving the data points additional
encodings (such as size, shape, and color).

Though the radial visualization included tooltips to represent
exact data, these visualizations could be paired with alternate UI
controls (such as a map, or a sortable columnar data grid) which
represent the same data and which interact with one another. This
would allow the data to be used in a richer environment.

Finally, like in Mann and Reiterer [1999], our clustering
algorithm can be applied to search result visualization, noting
each search result keyword as a constraint. This is a direct
extension of Mann and Reiterer’s work, but provides for an
intelligent form of grouping, and could also be used in further
development of our radial mapping.

References

Adobe, Inc. Adobe - Flex 3. 2008 13 12
<http://www.adobe.com/products/flex/>.

Flare | Data Visualization for the Web. 13 12 2008
<http://flare.prefuse.org/>.

Google. 12 12 2008 <http://www.google.com>.

Zillow. 12 12 2008 <http://www.zillow.com>.

 AHLBERG, C. AND SHNEIDERMAN, B. 1994. “Visual information
seeking: tight coupling of dynamic query filters with starfield

displays.” In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems: Celebrating
interdependence (Boston, Massachusetts, United States,
April 24 - 28, 1994). B. Adelson, S. Dumais, and J. Olson,
Eds. CHI '94. ACM, New York, NY, 313-317.
http://doi.acm.org/10.1145/191666.191775

MANN, T., REITERER, H. 1999. “Case Study: A Combined
Visualization Approach for WWW-Search Results.” First
publ. as paper in: IEEE Information Visualization
Symposium 1999, Late Breaking Hot Topics Proceedings,
Supplement to: 1999 IEEE Symposium on Information
Visualization (InfoVis 99), San Francisco, CA, USA,
October 24-29, 1999. http://w3.ub.uni-
konstanz.de/v13/volltexte/2007/3198//pdf/tm_hr_iv_1999.pd
f

SEBRECHTS, M., VASILAKIS, J., MILLER, M., CUGINI, J., AN D
LASKOWSKI, S. 1999. “Visualization of Search Results: A
Comparative Evaluation of Text, 2D, and 3D Interfaces.”
http://zing.ncsl.nist.gov/cugini/uicd/sigir-paper-jun99.pdf

SMITH, ANDY. 2001. “Attribute Explorer: A Dynamic Query
Mechanism.” 2 April 2001.
http://www.ibm.com/developerworks/library/us-atex/

WILLIAMSON, C., SHNEIDERMAN, B. 1992. “The dynamic
HomeFinder: evaluating dynamic queries in a real-estate
information exploration system.” In Proceedings of the 15th
Annual international ACM SIGIR Conference on Research
and Development in information Retrieval (Copenhagen,
Denmark, June 21 - 24, 1992). N. Belkin, P. Ingwersen, and
A. M. Pejtersen, Eds. SIGIR '92. ACM, New York, NY, 338-
346. http://doi.acm.org/10.1145/133160.133216

	1 Introduction
	Related work
	3 Methods
	3.1 Constraint satisfaction
	3.2 Near-miss grouping
	3.2.1 Averaging
	3.2.2 Clustering

	3.3 Visual Mappings
	3.3.1 Linear
	3.3.2 Radial

	3.4 Animation

	4 Results
	4.1 Linear
	4.1.1 Analysis

	4.2 Radial
	Analysis

	5 Discussion
	6 Future work

