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Abstract 

We present Releviz, a system that provides a two-dimensional 
interface for selecting and displaying multivariate data records. 
Releviz describes a two-component system: A standardized 
constraint language for expressing search parameters specific to a 
particular data domain, and for evaluating those search 
parameters; and a two-dimensional display field of the search 
results, in linear or radial orientation, in which relevance maps to 
one of the major coordinate axes and a grouping function maps to 
the other. We provide two implemented grouping functions, 
weighted average, and a constraint-based clustering algorithm. 
We document and provide an internal evaluation of this system, 
including its sample implementation. 
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1 Introduction 

Modern user-centric applications, especially those on the internet, 
allow users to sift through massive amounts of data to find 

information useful to them.  From search engines (Google) to real 
estate listings (Zillow), data filtering and searching are extremely 
common tasks for information workers of all sorts. 

When using search engines with highly domain-specific data, 
such as Zillow’s “Home Postings” search engine (See Figure 1) or 
PCWorld.com’s laptop review browser (See Figure 2), users are 
subjected to a common pattern: given the large set of results, a 
user must filter down the results by adding constraints to their 
query.  The user then is subjected to an iterative process of more 
tightly constraining a query until either their desired results are 
located or they have over-constrained the data, leaving him with 
too few results, and forcing him to relax his constraints in order to 
find results that closely match his criteria. 

This iterative filtering process that users must perform when 
searching large data sets is time-consuming and impractical for 
users.  Much of this stems from the fact that users rarely think in 
terms of hard constraints and filters, but rather in terms of 
“desires.”  As a result, the constraints they set are often more 
representative of their “ideal” results rather than their strict 
requirements.  In fact, especially with data domains where perfect 
matches are unlikely, users are more often interested in “near-
misses” to their queries.  These “near-misses” are results that 

 
Figure 1: Zillow.com’s “Home Postings” search engine.  Note the filters on the left that allow users to constrain their queries based on 

parameters such as price, number of bedrooms, and square footage in search of a home that meets their needs. 



 
Figure 2: PCWorld.com’s notebook review browser.  Note that users can “refine their searches” based on a set of criteria.  Selecting a 

criterion filters out laptops that do not meet the criteria.  In this case, the user has filtered down to laptops between $500 and $1,000, but 
any laptop that costs $1,001 will be excluded from this list. 

either meet most of their constraints or those that nearly meet a 
particular constraint.  For example, a prospective home-buyer 
might constrain a search for home to a maximum price of 
$100,000, but if a home showed up on the market that otherwise 
met their needs and was listed for $101,000, the home-buyer 
might still be interested in that home. 

In these types of situations, users are far less interested in strictly 
constraining a query to filter down results, but are instead 
interested in retrieving the most relevant results based upon their 
queries.  In this paper, we propose Releviz, a pair of visualizations 
that helps users discover the “near-misses” based upon relevance 
for their queries, and that can be applied across varied data 
domains with multiple query constraints.  First, we will explore 
works related to this problem.  Next, we will explore the 
approaches we have taken in developing these visualizations.  We 
will then present Releviz and discuss its merits and weaknesses.  
Finally, we will suggest future work within the scope of Releviz. 

2 Related work 

We build existing approaches, combining the results of constraint-
based mapping, dynamic queries with direct manipulation, and 2D 
graphical representation to search results. The original interface to 
dynamic query, the Dynamic Homefinder [Williamson and 
Shneiderman 1992], provides a prototypical search function by 
which constraints are controlled and instant updates appear on a 
geographic map display. Another early example of constraint and 
relevance search is the Dynamic FilmFinder [Ahlberg and 
Shneiderman 1994], that seeks to generalize results display in a 

2D grid. We work extensively from this principle, and from the 
principles of direct manipulation and incremental refinement that 
the system embodies. 

In addition, the Attribute Explorer [Smith 2001] introduces a 
multiple-histogram and data-brushing approach to the problem of 
selection across multiple constraints, and the example produced 
with the Attribute Explorer also lists perfect matches along with 
records that fail one or more constraints; however, the output of 
this constraint matching interfaces is merely an ordered list, and 
does not allow for graphical output and relevance comparison. 

Finally, Mann and Reiterer [1999] offer a system for visualizing 
text search results through a scatter plot with relevance as one of 
the core axes; however, this system provides for text search 
results instead of constraint satisfaction, and the scatterplot 
provided has no accounting for clustering algorithms of any form, 
instead suggesting individual keywords on each axis. 

3 Methods 

We approached the problem of visualizing near-misses to a query 
from two angles we considered to be important for users trying to 
browse filtered data.  First, we explored constraint satisfaction in 
order to assign a relevance to each of the data points in the given 
data set.  Next, we considered how near-misses might most 
appropriately be grouped so that users can see why data points are 
failing to meet their constraints. 



Our methods assume that we have been given a “domain data 
set,” which describes both the data points in the domain and the 
set of constraints that can be placed upon that data.  With these 
two sets of information (constraints and data points), we can 
derive a general means for visualizing near-misses for queries 
over the data. 

3.1 Constraint satisfaction 

We define a constraint as an arbitrary weighted fitness function 
over a data point.  As such, constraints consist of two main 
components: 

1. Weight – an arbitrary real-number value that will be 
used in conjunction with other constraints. 

2. Fitness function – an arbitrary function that returns a 
value between 0 and 1 indicating how well the 
constraint has been met by the data point the function 
takes as a parameter., where 1 indicates that the data 
point meets the constraint. 

We have also identified two main types of constraints: 

1. Discrete – constraints that have either been met or 
violated by a particular data point.  Discrete constraints 
are characterized by piecewise fitness functions, usually 
only returning a 0 or 1.  Examples of discrete 
constraints for searches for a laptop might include “has 
a webcam” or “has a solid-state disk.” 

2. Progressive – constraints that may be partially met by 
“close” values.  Progressive constraints give us more 
information about how close a data point is to meeting 
the constraint.  Often, progressive constraints have 
fitness functions that return 1 for all perfect matches, 
then decay in value as the data points drift further away 
from the criteria of the constraint.  Examples of 
progressive constraints for home postings searches 
might include “distance from a place” or “price range.” 

Traditionally, constraints would be used to strictly filter the data 
set, where only data points that meet all constraints (with a fitness 
of 1) are included in the result set.  For these types of queries, 
weight has no bearing. 

We attempt to use these constraints to derive a scalar “relevance” 
value for each data point.  We define relevance to be a weighted 
average of the fi ess of the datn ta point over all constraints: 

ሻܽݐሺ݈݀ܽ݁ݎ ൌ
∑ ௦௧௧௦אሺܿ,ݏݏ݁݊ݐ݂݅ ሻܽݐܽ݀ ൈ ሺܿሻሻݐ݄݃݅݁ݓ

∑ ௦௧௧௦אሺܿሻݐ݄݃݅݁ݓ
  

This relevance calculation gives us a scalar between 0 and 1 
indicating the overall fitness of a data point to a query.  By 
mapping this value to a visual variable, we can indicate how well 
a particular data point matches the query. 

3.2 Near-miss grouping 

In addition to visualizing the relevance of a data point to a user’s 
query, we attempt to visualize the reasons for which a particular 
data point received a less-than-perfect relevance score.  We derive 
this grouping from the constraints that a particular data point 
failed to completely satisfy.  To completely map these failures, we 
would require an arbitrary number of dimensions, since each 

constraint provides another dimension of data as to why the data 
point lost relevance.  It is always a struggle to try to present 
something in two dimensions that would more naturally be plotted 
in n-dimensional space, so we made a few attempts to 
approximate the effect in a linear fashion.  We have used two 
different methods in our visualizations to solve this: 

3.2.1 Averaging 

Our “averaging” approach attempts to linearize the constraint 
violations by using a weighted average of the constraints that 
were violated.  We begin by distributing the constraints evenly 
along a number line.  If only one constraint has been violated by a 
particular data point, the “grouping value” is simply assigned to 
the point on the number line that corresponds with the broken 
constraint. 

With two constraints violated, we start at the point on the number 
line corresponding to the constraint for which the fitness was 
lowest, then shift the point toward the next violated constraint 
based upon how badly it was violated by the data point.  Thus, if 
two constraints were equally violated by a data point, the 
grouping value would be exactly half-way between them. 

We continue this process for three, four, up to n different 
constraints, resulting in an “average” (loosely defined) of the 
constraints that contributed to a decrease in relevance for a data 
point. 

For some visualizations (in our case, the “radial” visualization), it 
is more useful to treat the number line as a circle, where the 
“halfway point” always lies on the minor arc between the 
constraints being averaged. 

Whether we are working with a circular mapping or a linear one, 
the end-effect of this calculation is that the grouping value starts 
by mapping to the constraint that contributes the least to the data 
point’s relevance (has the lowest fitness), then gets “nudged” 

Figure 3: The “dartboard” of relevance used by the radial visual 
mapping.  Note that two data points that have the same radius 
from the center of the circle have equal relevance.  Thus, the 

most relevant data points will be the most central ones. 



toward each of the remaining constraints based upon their 
contribution (or lack thereof) to the data point’s relevance. 

3.2.2 Clustering 

Our “clustering” approach assigns a single, discrete range for each 
violated constraint. These constraints necessarily overlap, creating 
a 'map' of divided regions in which each region is associated with 
zero or more constraints. In this way, we can visually represent 
each constraint as an undivided region of the graph, and the 
constraints can logically combine in their overlaps. 

We define “region fitness” to be the sum of the products of fitness 
and weight for each constraint represented by the region, to 
e p raints: x ress how well a data point matches this subset of const

ݏ ൌ the subset of constraints represented by a region 
ݏ ك  ݏݐ݊݅ܽݎݐݏ݊ܿ
region‐fitnessሺݏ, ሻܽݐܽ݀ ൌ ∑א௦݂݅ݏݏ݁݊ݐሺܿ, ሻܽݐܽ݀ ൈ  ሺܿሻݐ݄݃݅݁ݓ

We implement this range satisfaction problem by building a list of 
regions, initially set to a single region with no representative 
constraints. In this way, we can “add” a constraint-satisfying 
region by specifying both the start and end regions with which to 
overlap, and then dividing the region twice (see Figure 3). 

To build the map and determine overlap, we do the following 
process, using the entire set of data or a small representative 
sample as necessary: 

1. Select the “best” constraint—the one with the largest 
sum of fitness values given the data, multiplied by the 
weight. 

2. Test each possible start and end region to see which best 
fits the data. 

3. Make that selection permanent (splitting the start region 
and end region as in Figure 3) and loop until all violated 
constraints have been assigned a location on the map. 

We assign each data point to the region that has the highest 
fitness. In the event of equal region-fitness, we assign the data-

point to the region with the lowest sum of weights of the 
constraints it represents, ensuring that (in case of a tie) each data 
point is assigned to the least-specific region that can contain it; 
otherwise, data points would accumulate in a random section, 
sometimes leading to improper implications about the data. 

Finally, we remove regions that have zero members, and plot the 
data points on the graph. In our implementation, we also added 
lines to further distinguish between the data points, and provided 
an equal-spacing algorithm that gives each region an area 
proportional to the number of data points accumulated in it, and 
prevents data points from overlapping. In the current 
implementation, X-location within a region is random, but related 
data points are located in the same region. 

 

3.3 Visual Mappings 

We looked at two different ways of mapping relevance to visual 
variables.  The first uses a linear mapping of relevance to portray 
the fitness of data points.  The second uses a radial mapping of 
relevance to portray the fitness of data points.  These approaches 
are described here: 

3.3.1 Linear 

We attempt a “Linear” visual mapping. This mapping matches the 
existing model in which search engines return results. A large box 
at the top contains data points that match all constraints, to avoid a 
singularity; this top box does not have a well-defined X and Y 
coordinate, but instead is displayed randomly in order to assist in 
estimating the number of returned results. 

The y-coordinate indicates relevance, as calculated before: as the 
data points are less and less relevant, they fall further down on the 
chart. 

Our x-coordinate mapping provides two separate functions: To 
distinguish data points from one another, and to create a spatial 
grouping for results that are “related”. In the linear visual 
mapping we implemented, we avoided the problem of redundant 
encoding by using the clustering algorithm above; using weighted 
averages in the linear function is not advisable, as a lack of “wrap-

dp1 

dp2 

dp3 dp4 

Figure 4: The region-splitting algorithm. The first line 
shows the initial map with one region placed, representing 
constraint c1. The second shows the five regions resulting 

from some placing c2 with some overlap, and the third 
shows five regions resulting from placing c2 fully 

overlapping c1. 

Figure 5: The linear visual mapping, displaying the clustering 
system. Point dp1 matches all constraints, and is displayed in the 

top box. Point dp2 and dp3 are grouped because they violate 
similar constraints, but dp3 and dp4 are the same distance from 

the top gray box because they are equally “relevant”. 



around” ensures that most weighted averages will tend to the 
center of the graph. 

Finally, our implementation provided for a slight random color 
jitter in order to further distinguish data points during animation 
and between state transitions. In our current implementation, this 
is a random value assigned when the data set is loaded. 

3.3.2 Radial 

We attempt a “Radial” visual mapping.  This mapping can be 
envisioned as a dart board, where the bullseye represents data 
points with 100% relevance.  As data points move out from the 
center, they are less and less relevant.  In Figure 3, we 
demonstrate the mapping of relevance to the radius of the data 
point’s plotted location within a circle. 

Specifically, for a circle of radius 1, relevance is mapped as 
follows: 

ሻሺ݀ݏݑ݅݀ܽݎ ൌ  1 െ  ሻሺ݈݀݁ݎ

To incorporate near-miss grouping, we use our averaging 
approach to derive a scalar that can be mapped to the angle (θ) of 
the data point in this visualization.  We will give each constraint 
an equal share of the angle, then use averaging to determine 
where a data point should fall.  In Figure 6, we see how data 
points with lowered relevance are mapped onto an angle in the 
radial visualization. 

It is certainly the case that the error near-miss grouping value that 

is mapped to the angle may not be unique.  As a result, it is 
impossible to say definitively that a point with a low relevance 
was caused by a violation of a particular constraint simply by 
looking at its mapping to an angle.  However, “near-misses” occur 
most often when the relevance is high, and it is more important 
that the causes for such points’ lowered relevance be clear.  As the 
number of violated constraints decreases, the combination of 
averaging with a relevance becomes less ambiguous, making 
constraint violations easier to interpret.  In the example in Figure 
6, dp2 can be reliably said to have violated constraint c2 because 
it lies close to the center and in the middle of the angle range 
given to c2. 

3.4 Animation 

Animation plays an important role in making Releviz effective.  
Our approach uses animation primarily for the purposes of 
helping users understand how changes to their constraints affect 
the relevance of the data points they are browsing.  As users 
adjust constraints, they will be able to see the data points moving 
to their new locations in the visualization in real time, giving them 
valuable feedback on how the constraint impacts their query 
results. 

Changes to constraints come in to forms, each of which may be 
animated differently: 

• Discrete – these changes to constraints usually involve 
changing discrete values, such as the allowed categories 
of laptops or types of homes in a query.  In this case, 
users would rarely make continuous gestures, where 
they would expect to see the visualization changing in 
real-time with their adjustments.  Animation of discrete 
changes to constraints are handled by smoothly 
transitioning (accelerating and decelerating) each data 
point from its original position to its new one. 

 
Figure 6: Demonstrates how data points are mapped based 

upon the constraints they violated.  Here, dp1 has violated no 
constraints, so its angle component is undefined.  Dp2 has 

violated only the c2 constraint.  Dp3 has violated both the c1 
and c2 constraints.  Dp4 has either violated c2 and c7, c1 
severely, or c2, c1, and c7 in equal amounts.  These error 

grouping scores are not unique, but usually items with the same 
error score and radius pairing will have violated similar 

constraints. 

• Continuous – continuous changes to a constraint are 
changes where the user will expect to see changes to the 
visualization during their gestures, such as sliding a 
slider.  Such changes must occur rapidly, and 
accelerating and decelerating data points during such 
animations keeps the visualization from reflecting the 
user’s changes in real-time.  Thus, user gestures to 
change continuous constraint parameters are animated 
by rapidly updating the visualization to always reflect 
the user’s most recent input.  Large changes that would 
disorient the user are treated as discrete, and are thus 
fully animated. 

4 Results 

Both the linear and radial visualizations were implemented using 
Adobe Flex 3.0 (Adobe, Inc.) and Flare (Flare | Data Visualization 
for the Web), a visualization toolkit for flash-based user 
interfaces. 

We designed a common data set object model in ActionScript for 
use with Releviz, and which both visualizations (linear and radial) 
would be able to consume.  We then implemented two different 
data sets that would allow our visualizations to operate on real-
world data, and provided a reasonable set of constraints for each 
that users would be able to adjust.  The first kept a local copy of 
laptop review data from PCWorld.com.  The second used Zillow’s 
Postings API to fetch data about homes for sale in a particular 



county.  Each of these thus represented real data for which 
filtering search engines were already in existence. 

We also provided a common interface whereby constraints can 
provide UI, allowing the same data set to be reused with multiple 
visualizations. 

Both visualizations are interactive, allowing users to see changes 
to their query reflected in real time through animation and 
providing some details about the individual data points to users in 
the form of tooltips or click handlers. 

4.1 Linear 

The linear visualization was an implementation of the linear 
mapping described above; the implementation tested uses the 
clustering grouping function also described in this paper.  Figure 7 
shows the final product in action. 

4.1.1 Analysis 

In this implementation of the user interface, the linear interface 
demonstrates a user interface consistent with the specification we 
described, but with significant room for further refinement. 

Weaknesses: 

• In the current implementation, regions are not labeled, 
making it difficult to discern how the search results are 
grouped. 

• Also, in the current implementation, it is difficult to 
determine which series of regions represent which 
constraint. It would be a simple extension to allow a 
user to select a constraint and see a color or label 
marking each region representing that constraint. 

• There is currently no way to graphically see how much 
a given constraint was violated. A good candidate for 
this display would be to provide a quantitative encoding 
(e.g. color saturation or size) for each data point when 
the chosen constraint is selected or highlighted. 

• Animation does not perform as strongly as in the radial 
grouping, because the horizontal (grouping) encoding 
cannot wrap around the way the angular grouping 
encoding does in the radial graph. 

• Within each group, there is no horizontal ordering, 
making the lines or other region-distinguishing marks 
important for the interpretation of the graph. In the 

future, X-ordering within regions may encode more 
details about related data points. 

Strengths: 

• Unlike the radial implementation, the linear 
implementation gives the same amount of horizontal 
space to data points that are very near misses, due to the 
center point of the circle representing the perfect 
constraint matches. 

• The current implementation provides space for many 
perfect matches, unlike the current implementation of 
the radial graph. This, however, is a byproduct of these 
particular implementations; the radial graph is capable 
of reserving a threshold radius, and by reducing the size 
of the gray box, the implementation of linear gains this 
same “singularity” problem. 

• The current implementation provides a unique 
grouping; groups that appear in the same region are 
absolutely similar, as opposed to the “false encodings” 
in the radial visualization. 

• In the current implementation, data points are expressly 
prohibited from overlapping. 

• The current visualization matches existing web search 
engines such as Google, where the most relevant results 
are listed at the top of the page. This should reduce the 
learning time involved in understanding the input. 

4.2 Radial 

The radial visualization was an implementation of our radial 
approach as described above.  It uses a pie chart to visualize the 
constraint boundaries and a circular layout for plotting the data 
points.  Figure 8 shows the radial Releviz visualization in action. 

The radial visualization’s animations occur over polar 
coordinates, so data points do more than simply move to the 
correct location.  Rather, they follow an appropriate spiral to 
reach the correct radius and angle.  This allows users to see how 
the radii and angles would have changed had each step between 
their constraint changes been made as well.  This form of 
animation also helps users locate similar results, which will tend 
to move together as constraints change.  This effect is 
immediately perceptible during animation using the radial 
visualization. 

Figure 7: The linear visualization, running using the laptop data. Note the gray box at the top for matching constraints, and the 
vertical lines separating regions. The lines of data points are due to exclusive use of “discrete” constraint functions. 



Figure 8: The Radial Releviz visualization in action, operating on live Zillow home postings data.  Here, we can see that there are some 
perfect matches and a number of results that violated the distance, lot size, and price constraints.  Also shown is the tooltip for one of the 

data points, where the calculated relevance is shown alongside the details for that data point. 

4.2.1 Analysis 

The radial visualization is by no means flawless, and there is 
certainly room for improvement.  It has a number of strengths and 
weaknesses when visualizing near misses: 

Weaknesses: 

• Misleading segmentation of constraints – the radial 
visualization as it is currently implemented uses what is 
essentially a pie chart to draw the division of the circle 
into the constraints for the data set.  Unfortunately, 
these give the user a false sense of the causes for 
lowered relevance when multiple constraints are being 
violated.  This primarily occurs because the user has no 
sense that the wedges of the circle are anything but 
distinct categories into which data points may fall.  A 
more appropriate coloring and rendering of this division 
is worth exploring, and might involve gradients to give 
the user a sense that these regions blend with one 
another. 

• Visibility of relevant data – the radial visualization 
currently offers less overall space to more relevant data.  

Any data points that fully match a query will overlap at 
the center of the visualization, while the concentric 
circles with small radius offer little additional space for 
placement of the near misses.  A possible remedy might 
be to reserve a larger region in the center for perfect 
matches to a query, then use the remaining radius 
(outside of the inner circle) to map relevance. 

• Difficulty in comparison – small differences in radius 
are very difficult to detect if data points are not near 
each other.  In Figure 8, it is unclear whether the data 
points strewn across the green, red, and purple wedges 
all share the same approximate relevance, or whether 
they are spiraling outward.  While such comparisons are 
far less frequent with these types of data domains, there 
may be other types of data that do warrant closer 
comparison of the relevance of various data points. 

Strengths: 

• Centrality of high-relevance results – the radial 
visualization for Releviz has the benefit of placing 
highly relevant results at the center of the visualization 
for users.  This helps users focus on perfect matches and 
near misses, while animations allow users to see how 



changes in constraints bring data points to more central 
locations from afar. 

• Real-world analogy – first reactions to the radial 
visualization in Releviz have been that the “dartboard” 
analogy “makes sense” for visualizing relevance, and 
making its use more familiar to users 

5 Discussion 

To no great surprise, the most challenging and prominent aspect 
of this project was the compression of n data dimensions into a 
single relevance and a single grouping value. While we believe 
that our solutions are novel and advanced, we are aware that this 
representation is a complex problem rooted in information theory, 
and needs plenty of work. 

One of the most interesting aspects to the visualizations we 
developed is that data outputs incorporating “near misses” are 
inherently more useful when the user overconstrains his search 
results, allowing him a small or empty overlapping set that 
matches all constraints, and instead starting with a very small 
optimal set and moving outward. This is a potential change in 
behavior afforded by rich constraint specification and weighting 
UI along with a multivariate representation of the “top” search 
results. 

However, in creating the visualizations, we discovered that 
controlling the weight of the constraints provides wildly different 
views of the same dataset and the same main constraints; 
therefore, the additional power must be weighed against the 
additional, arguably arcane UI presented to the user. A similar 
problem in the Attribute Explorer [Smith 2001] was solved by 
allowing user to order the constraints by personal priority, 
defining an order requirement instead of a numeric weight. 

The functions we provided did not provide for control, with the 
exception of Price in the laptop data set could be defined as 
“hard” (discrete) or not hard (continuous). Though constraints 
could ostensibly be much more complex than this, our 
implementation is agnostic to the calculations involved. 

The data sets we tested are all richly multivariate, and numeric in 
nature: They contain large amounts of data, and large numbers of 
numeric or true/false fields. We did not test the repercussions of 
data that contains duplicate or near-duplicate records, or data 
domains that contain text data; the latter, however, could still be 
expressed using a real-valued scalar between 0 and 1, and such 
could still be integrated into our system. 

The use of animation, an afterthought, was unexpectedly 
successful with the weighted average clustering function, because 
the effects of a constraint could be isolated by disabling it 
(ignoring it, or setting its weight to zero) and re-enabling it. 

In contrast, the linear visualization seems highly appropriate for 
fixed data delivery, as (between the two) it uses space and 
prevents overlap most effectively. In this way, the linear 
visualization could be applicable in systems that do not have 
graphics acceleration, or systems where interactivity is minimal or 
where the graph specified here is output into a fixed format (e.g. 
through a printer). 

Finally, in observation of current trends, the creation and 
development of large and richly-described datasets—notably 

through XML and Web Services—will increase the need for 
domain-dependent search. For instance, a set of constraints could 
be generated from an XML Schema, or metadata document 
defining an XML structure. Though it appears that the current tool 
of choice is generic text search (such as Google), the creation of 
rich cross-site datasets highlights the usefulness of this project. 

6 Future work 

The most obvious extension to our current work would be to 
evaluate the visualization on a number of qualitative and 
quantitiative factors. We did not provide for user studies or user 
evaluation in this study, and we are eager to know whether users 
would appreciate data to be visualized in this way, and whether it 
allows them to access data faster. 

To extend the visualization we offer, we seek further development 
on better grouping functions to group “near misses”. For instance, 
a function that better groups closely-related results at the expense 
of slightly-varying relevance values could increase the usefulness 
of the visualizations we present. While our current grouping 
functions, clustering and weighted averaging, provide a starting 
point for compressing the multivariate constraint data into a single 
dimension of representation, they are by no means the best ways 
to provide for data interpretation. 

Though the visualizations we provide are open to limited 
interactivity, additional research could provide a more space-
efficient way of “drilling down” and refining the search. In 
particular, the concept of “data brushing”—graphical selection of 
multivariate data on an ordered X-Y plane—could be applied to 
select results. 

In addition, the graphical representation can be extended into 
three dimensions, and by giving the data points additional 
encodings (such as size, shape, and color). 

Though the radial visualization included tooltips to represent 
exact data, these visualizations could be paired with alternate UI 
controls (such as a map, or a sortable columnar data grid) which 
represent the same data and which interact with one another. This 
would allow the data to be used in a richer environment. 

Finally, like in Mann and Reiterer [1999], our clustering 
algorithm can be applied to search result visualization, noting 
each search result keyword as a constraint. This is a direct 
extension of Mann and Reiterer’s work, but provides for an 
intelligent form of grouping, and could also be used in further 
development of our radial mapping. 
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