
Color Palette Generation for Nominal Encodings

Calvin Ardi
Computer Science

University of California, Berkeley
Berkeley, CA

+1 510 642 8679
calvin@rescomp.berkeley.edu

Simon Tan
Computer Science

University of California, Berkeley
Berkeley, CA

+1 510 915 7789
simtan@eecs.berkeley.edu

Ketrina Yim
Computer Science

University of California, Berkeley
Berkeley, CA

+1 925 922 9152
kyim@berkeley.edu

Abstract

Encoding data using color is a key technique employed by almost
all visualizations. A set of colors used to represent data values must
be carefully chosen in order to maximize the effectiveness of the
visualization in which it is used. We present a method of automat-
ically generating effective color palettes for nominal data encoding
based on user specifications. We apply simulated annealing with
an appropriate heuristic function to find palettes that have visually
distinguishable colors and adhere closely to a user’s color prefer-
ences. Such palettes can be customized to feature color harmony,
a particular variation of contrast or saturation, or support for the
colorblind.

Keywords: color, nominal encoding, simulated annealing, color
use guidelines, colorblindness

1 Introduction

The use of color provides a number of benefits to visualizations.
Color is often used in visualizations to encode data, be it the mag-
nitude of a quantitative value or the category in which a particular
data point falls. If used effectively, a color encoding can improve
legibility, facilitate data layering, create groupings, and highlight
values of interest. Conversely, poor color design can devalue the
information presented, create distracting clutter, and lead to false
conclusions about the data. These consequences often make select-
ing a color palette a difficult and time-consuming task, particularly
for those inexperienced in visualization design, because there are
many factors to consider while choosing colors. Among the most
important of these factors is color separability. One must ensure
that each color in a palette is visually distinguishable from the oth-
ers, a property that becomes difficult to maintain as the number of
values to encode increases. Other factors are value and contrast
control. While it is important for data values or groupings to be
differentiable, data points that unintentionally stand out or become
subdued can misdirect the audience’s attention. In addition, the
desire for aesthetics and compatibility with colorblind viewers can
also affect color choices.

The complexities of palette selection have led to two main ap-
proaches to palette design interfaces in visualization software. One
is to present users with a set of predefined color palettes. Expert
designers usually create these palettes, so most of the color issues
are addressed. However, presets offer little opportunity for users
to customize the appearance of their visualizations. The other ap-
proach sits at the opposite end of the spectrum, offering full control

of the palette to the user. This option offers the most freedom, but
places the burden of palette design completely on the user. As men-
tioned earlier, this can be overwhelming to novices. Thus, there is
a need for a compromise between these two interfaces.

The compromise created by our method resides in the fact that the
user can customize the palette through a set of preferences, but the
palette itself is generated by solving the optimization problem of
finding a palette that maximizes distinguishability, limits value and
contrast variation, and closely adheres to the user’s guidelines. Our
system is built on Flare, a Flex adaptation of the Prefuse visualiza-
tion toolkit [Heer et al. 2005].

2 Related Work

Color palette generation is a topic of interest for both visualization
researchers and artists alike. As such, a significant amount of work
has been done in the field of palette design.

2.1 Quantitative Palette Generators

The majority of research has gone into palettes for quantitative data,
where color often has more responsibility than to just differentiate
data points and groupings. Task-based approaches [Tominski et al.
2008] produce palettes according to the purpose that the palette
must serve in visualizing the data (i.e., simple lookup, compari-
son, or localization). Commercial efforts also exist, as seen in IBM
Research’s PRAVDAColor [Bergman et al. 1995]. This tool gen-
erates palettes that preserve the spatial structure of data, facilitate
specific analysis tasks, and considers concurrent color use to reduce
color-mixing artifacts. Though quite robust, palette generation with
PRAVDAColor takes a significant amount of time due to the numer-
ous user inputs required.

2.2 Tools for Nominal Palettes

Palettes for quantitative data are not necessarily applicable to qual-
itative data. Therefore, separate tools have been created for palettes
encoding nominal data. Brewer’s ColorBrewer [Brewer and Har-
rower 2002] presents palettes for encoding categorical data in maps.
Though limited to a maximum of twelve colors in a palette, it of-
fers information on a palette’s compatibility with colorblind view-
ers with a variety of displays and each color’s value in a range of
color space coordinates. However, ColorBrewer does not automat-
ically generate palettes; rather, it presents a series of appropriate
presets designed by Brewer herself through years of experience de-
signing maps. As such, ColorBrewer yields effective palettes but
restricts customizability like any other palette chooser that presents
presets.

2.3 Other Palette Generators

On the Internet, applications exist to generate palettes with a signif-
icant amount of customizability. One example is the Color Scheme



Chooser [WebsiteTips.com 2008], an application that produces a
palette given a base color and color scheme options. Some applica-
tions can even produce palettes based on an uploaded image [Adobe
2008]. In general, these generators produce palettes that are high in
aesthetic value but are not meant for data encodings. The interfaces
of such tools, however, provided a significant amount of inspiration
for our generator’s user interface.

3 Methods and Implementation

3.1 User Options

Since our solution provides a way for users to input preferences for
influencing the palette generation, it is necessary to describe what
each of these preferences are before delving into how our system
utilizes them.

3.1.1 Size

This is the number of colors desired in the resulting palette. We can
theoretically support any number of colors in a palette, but we find
that very large palettes would inevitably contain colors that would
be difficult to differentiate from each other. We allow anywhere
from 3 to 50 colors per palette in our implementation, but resulting
palettes of 20 colors or more are usually undesirable. The default
setting is 10 colors.

3.1.2 Harmony

The concept of color harmony refers to palettes that have “the-
matic” colors. For example, a “warm” palette would primarily have
colors from the red-orange-yellow part of the hue spectrum. In our
implementation, we allow the user to specify these types of color
harmony in the resulting palettes:

Warm colors palettes that have a majority of their colors in the
red-yellow/green hue range

Cool colors palettes that have a majority of their colors in the
green-violet hue range

Specific color palettes that tend to have their hues near the hue of
a specified color

3.1.3 Variations

Color palette variations are other types of color schemes that might
be desirable for a visualization designer using nominal color encod-
ings. We allow the user to specify one of the following options for
color variation:

Pastel colors palettes with colors that have low saturation values

Bright colors palettes with colors that have high saturation values

High contrast colors palettes with colors that have high contrast
with each other and a specified background color

Low contrast colors palettes with colors that have lower contrast
levels with each other and a specified background color

3.1.4 Colorblindness

One of the more difficult tasks for a palette designer is in choosing
colors that would not be confused by a person with colorblindness.
We offer the ability to generate palettes that avoids sets of colors
that would look too similar to a colorblind person:

Red-Green colorblindness Avoids having both red and green
hues appear in the palette

Blue-Yellow colorblindness Avoids having both blue and yellow
hues appear in the palette

Together, these two options allow for the creation of palettes that
have colors fully distinguishable from each other for the vast ma-
jority of those who have some sort of colorblindness. (∼1.3% of
the people in the United States [WrongDiagnosis.com 2008])

3.1.5 Background Color

The user can specify the hex-value of the color used as a back-
ground for the visualization with this option. This is needed to
prevent the generation of palettes with colors too similar to the
background (one of Brewer’s Color Use Guidelines [Brewer 1999]).
This option is white (0xFFFFFF) by default.

3.2 Simulated Annealing

Our use of simulated annealing to approach this problem was born
out of a desire for an algorithm with these traits:

• The opportunity to use a heuristic function to judge the quality
of color palettes

• The ability to traverse the possible space of color palettes it-
eratively, in order to use our heuristic in such a way as to
determine the “best” palettes of that space.

Our implementation of simulated annealing is not the pure form of
annealing that is described in most artificial intelligence literature.
We have made modifications to make it more suitable for our pur-
pose. An outline of our algorithm follows in Algorithm 1.

Algorithm 1 Simulated Annealing Algorithm
currentPalette← default palette
currentScore← heuristic(currentPalette)
for i = 1 to numRounds do
newPalette← perturb(currentPalette)
newScore← heuristic(newPalette)

if newScore > currentScore or rand(0, 1) < exp−
∆score

T

then
currentPalette← newPalette
currentScore← newScore

end if
i← i+ 1

end for

3.2.1 Starting Palette

Depending on the user’s options for desired “color harmony” (none,
warm, cool, or a revolving around a specific color), we started
the algorithm with different initial palettes. For warm and cool
options, we start with palettes generated from the Flare library’s
ColorPalette.hot() and ColorPalette.cool() func-
tions respectively. If the user wants a palette that harmonizes
around a specific color, we start with a palette composed only of
that particular color. Another option would be to start with a di-
verging palette centered on that particular color, which we did not
explore.

If the user has no desired color harmony for the palette, we
start with the nominal encodings given by the Flare library
ColorPalette.category() function. Although this means
that the process begins with a quality, hand-chosen color palette,



Figure 1: Adjustments of Hue, Saturation, and Value in a 3-
dimensional representation of the color space. [SharkD 2008]

we hope that the random properties of the algorithm result in move-
ment away from the Flare palette to other unique palettes, perhaps
just as high or higher in score.

3.2.2 Perturbations

At each iteration, we perturb the current palette by altering a ran-
dom feature of a random color within it. In order to better con-
trol the effects we have on the colors in the dimensions we care
about within the heuristic, we perturb by randomly incrementing or
decrementing a color’s hue, saturation, or value at each step. The
Hue-Saturation-Value (HSV) color space is shown in Figure 1.

The amount we affect these values by at each iteration is constant
(0.05, where hue, saturation, and value ∈ [0, 1]). However, we
divide this factor in half for Hue modifications when we detect that
the user has chosen a color harmony preference, since this implies
that colors should not stray much from a defined range of hues.

By affecting palettes in this way, we essentially have the ability to
efficiently traverse the entire three-dimensional space of color for
each element of the palette. With an infinite amount of rounds,
we can theoretically reach every possible combination of colors for
palettes of any size.

3.2.3 Iterations

We calculate a score for every palette we generate through our per-
turbations using our modular heuristic function (see Heuristics),
and decide whether to accept or reject each new palette by com-
paring it with the previous palette.

Normally, we accept a new palette if it scores better than the pre-
vious one. However, to prevent our algorithm from inflexibility at
a local maximum, we accept palettes that are worse with a small
probability that goes down as more iterations are completed. The
probability that a worse palette is accepted is e−

∆scores
T , where T is

the number of rounds of the algorithm left to run. Hence, as T ap-
proaches zero, our algorithm gradually reduces to the pure greedy
algorithm which will only accept palettes if they are better.

3.2.4 Stopping Condition

We did not consider a more intelligent stopping condition for our
algorithm; rather, we decided to have a set number of rounds of
simulated annealing and adjusted that to study the impact of our
annealing on the resulting palettes. We generally ran about 10,000
rounds, but could feasibly run 100,000 rounds before the runtime
environment became unstable (see Performance).

3.3 Heuristics

In order to evaluate a generated palette, a set of heuristics is em-
ployed in the form of a general scoring function. The scoring func-
tion returns a linear combination of various weights multiplied with
scores returned from different modules that evaluate certain aspects
of each color within the palette, or the palette itself. All of the
modules evaluate the palette based on the HSV color model, which
allows for easier identification of the colors: a specific hue value de-
fines a color, while a color represented in the RGB additive model
is a combination of the three primary colors.

A default set of “good” values are created. If none of the user
options are selected, the scoring function will evaluate the palette
based on values previously prescribed (Figure 2). Options selected
otherwise will modify certain values and ranges based on the pref-
erence (e.g., if the cool “color’ harmony’ option is selected, we
explicitly define the range in hue values that are acceptable).

All modules in the heuristic return normalized scores with range
[−1, 1]. This allows for greatest flexibility when determining
weights, as the individual can tailor the scoring function based on
his or her preferences. This also opens up future work regarding
how the weights are calculated.

Aspect Values
Contrast [0.2− 0.8]

Hue [0 ◦ − 360 ◦]
Saturation [0.5− 1.0]

Value [0.5− 1.0]

Figure 2: Prescribed default values

3.3.1 Pre-Generation Modules

Before the scoring function is run, these modules make the ap-
propriate modifications to acceptable HSV values based on what
palette preference or color harmony the user selects. Depending on
the configuration or preference that a user has, the preferred values
for each characteristic of a color is redefined and updated if the user
changes input values.

In particular, “harmony” choices change optimal hue values, while
choices in “variations” change contrast, saturation, or value ranges
(Figure 3). Pastel colors, for example, require a saturation range
between 0.30 and 0.65; in all cases, as color is highly subjective,
values were chosen based on group consensus. Unless otherwise
noted, any ranges not modified were left to the default values listed
in Figure 2.

3.3.2 HSV Evaluation Modules

Several modules in the heuristic are dedicated to the validation of
various HSV values; although implemented in separate modules in
the Flare library, their discussion and implementation can be sum-
marized together under the same heading. In general, these modules
iterate through the palette, checking to make sure each aspect of the



t Palette Preference Aspect Values
Warm Hue [0 ◦ − 63 ◦, 330 ◦ − 360 ◦]
Cool Hue [90 ◦ − 300 ◦]

Specific base color Hue [hue− 10 ◦, hue+ 10 ◦]
High contrast Contrast [0.6− 1.0]
Low contrast Contrast [0.0− 0.5]
Pastel colors Saturation [0.30− 0.65]
Bright colors Value [0.85− 1.0]

Figure 3: Preferences and Corresponding Ranges

colors fit within a specified threshold (Figure 2, 3) and score the
palette appropriately.

Brewer [Brewer 1999] also notes that most people prefer blue col-
ors to yellow; this has been implemented, but weighted lower rela-
tive to the other heuristic modules as it would not be ideal to have a
palette that consisted of only blue hues.

Finally, our palette should have “spacing” between attributes and
values of each color. For example, it will not be an optimal palette
if there are two colors with similar hues. Likewise, palettes contain-
ing colors with different hues yet low values of saturation and value
would not be optimal either. All the colors would have muted hues
and be almost indistinguishable from each other. The “neighboring
values” module penalizes palettes that have colors whose values are
too similar with one another.

3.3.3 Saturation/Lightness Variation Modules

In addition to variations in hue, Brewer [Brewer 1999] noted
that qualitative schemes benefit from small variations in lightness
(value) and saturation. The standard deviation of the lightness
and saturation is taken from all the colors in the palette and sub-
tracted by an optimal saturation and lightness deviation value, 0.3
and 0.086, respectively. The resulting score is the difference be-
tween the absolute difference between the two standard deviations
and 1.0.

3.3.4 Colorblindness Module

Palettes can be created and tailored to colorblind audiences. In each
major type of colorblindness (red-green and blue-yellow), we not
only check to make sure that certain hues are avoided, but also that
they must fit within a specific saturation and value threshold in order
for a “penalty” to be assessed. By navigating the HSV color space,
one can determine that most colors with saturation or value less
than 0.5 tend to have their hues indistinguishable. A color with
saturation and value equal to 0.0 will be black, regardless of hue.

3.3.5 Contrast Modules

Colors in palettes, in general, should have an appropriate amount
of contrast between each other, and with the background. First, the
relative luminance, defined by equation (1) [Stokes et al. 1996], of
each color is calculated. We then calculate the Michelson contrast,
equation (2) [Michelson 1927], found by dividing the sum of the
two luminance values by the absolute value of their difference.

luminance = 0.2126R+ 0.7152G+ 0.07522B (1)

contrast =
Imax − Imin

Imax − Imin
(2)

The Michelson contrast is used when comparing the contrast of a
color to the background color due to potential divide-by-zero errors
associated with the Weber contrast (3).

contrast =
I − Ibackground

Ibackground
(3)

Module Weight (α).
hue 10.0

blue/yellow 1.0
colorblindness 30.0

contrast 1.0
background 1.0

neighbor 15.5
saturation threshold 5.5
saturation variation 1.5
lightness variation 1.5

language 1.0

Figure 4: Weights and Modules

3.3.6 Language Module

Brewer [Brewer 1999] notes “[in] addition to red, green, yellow,
and blue, the other basic colors named in all fully-developed lan-
guages are pink, purple, orange, brown, gray, white, and black.” A
module was developed that encompasses these ranges of colors and
positively affects the heuristic score if these hues exist within the
palette. To avoid excessive influence on the palette results, how-
ever, the weight associated with this module is significantly lower
than the weights of other modules.

3.3.7 Scoring Function

Given the modules, we can then generalize the scoring function in
equation (4), where N is the number of modules that exist, mod-
ule refers to a heuristic module that evaluates and scores a palette
for a certain quality (normalized to the range [−1, 1]) and α is the
associated weight given to that particular module.

heuristic score =

NX
i=1

αi ×modulei (4)

The list of weights and their corresponding modules used can be
found in Table 4.

3.4 Extension to Flare

Because Flare is an open-source visualization toolkit, we were able
to implement our palette generator as a Flex library based on Flare,
in hopes of presenting it as an extension package. The generator
consists of three classes:

NominalColorEncodingGenerator.as This class contains the
simulated annealing algorithm used to generate palettes iter-
atively. It also contains the perturbation function used to tra-
verse the color space.

NCEGHeuristic.as This Strategy class contains the heuristic
function used to evaluate each intermediate palette during the
annealing process.

ColorOptions.as This class is the type of the object used to pass
user-specified options to the palette generator. It also contains
the static variables used to refer to each parameter value by
name.



Figure 5: A screenshot of the graphical frontend

3.4.1 Graphical User Interface Wrapper

To provide a visual demonstration of how our palette generator
works, we implemented a graphical user interface to our Flex li-
brary. It displays the available palette options as a control panel
and the results of running the algorithm with these options on the
right. The resulting palettes are represented as a list consisting of
each color and its corresponding 32-bit hexadecimal value (with the
first two digits being the color’s alpha, which is always 0xFF). The
graphical user interface is shown in Figure 5.

The control panel consists of six components. From top to bottom,
they are:

Palette size input adjusted by clicking the “+” and “−” buttons on
either side of the displayed number

Color harmony input when the “Custom Base” option is selected
here, a text box to enter the custom base color as a 24-bit
hexadecimal value becomes active

Color style input

Colorblindness compatibility input

Background color input affects both the heuristic and the back-
ground that the generated palette is displayed against

“Generate” button when pressed, this reads in the user input
specified above it and runs the generator with those options

4 Results

4.1 Sample Palettes

Figure 6 presents a set of screenshots of palettes generated through
the graphical interface.

4.2 In Context with Data

In her guidelines, Brewer explains that the appearance of a color is
often affected by its context [Brewer 1999]. Therefore, a true mea-
sure of a palette’s effectiveness can only be obtained by actually
mapping the colors to some data and examining the resulting visu-
alization. We present our generated palettes in context with data

Figure 6: Samples of generated 10 color palettes

by using them to encode the nominal variable of decay mode in an
interactive table of isotopes [Yim 2008] implemented in Flex/Flare.
Screenshots of the resulting visualizations are shown in Figures 8
and 9.

4.3 Performance

Performance requirements vary depending on the usage scenario.
That is, the number of rounds may require adjustment based on the
application. As stated earlier, the color palette generator is a Flex li-
brary which outputs a color palette that can be used immediately for
visualization. An alternative is to use the included graphical fron-
tend to view the generated colors and export them for use in another
application or visualization tool. Thus, if being used with visualiza-
tions designed in Flare, the number of rounds should be decreased
such that there is no excessive delay in generating a palette. Like-
wise, a user selecting colors from the interface can afford to take
the time to increase the number of rounds and implement the colors
into his or her visualization manually.

Color generation was done with the default settings: a palette size
of ten with no additional options enabled. Debug statements were
suppressed and the user interface was run using Adobe Flash 9 and
Mozilla Firefox 3.0.4 on Apple’s Mac OS X on an Intel Core 2
Duo 2.4 GHz system. Running 1,000 rounds resulted in times vary-
ing from 690ms to 774ms, with a linear correlation between time
and rounds (Figure 7). Running at 40,000 rounds resulted in run
times around 28,000ms. We found that running anything greater
than 100,000 rounds resulted in a timeout built into Adobe Flex;
regardless, the amount of time required running that many rounds
would be highly impractical for Flare visualizations. If this many
rounds were needed, the generator should be implemented in a more



efficient language for more optimal run times.

Rounds Times (ms)
1,000 690− 774

10,000 7101− 7261
20,000 13976− 14368
40,000 28427− 28989

Figure 7: Generation running times

Part of the performance issue is due to the way we implemented
the heuristic. The heuristic is designed to remain flexible and al-
low quick modification or removal of each of the individual scoring
modules. A more optimized version could potentially be imple-
mented by combining several of the modules with related calcula-
tions into a more efficient larger module.

5 Discussion

Currently, there are two main issues with our generated palettes.
First, palettes sometimes have colors that are visually difficult to
distinguish, even though the colors have significantly different hex-
adecimal values. Our heuristic does take into consideration the pair-
wise contrast of colors in a palette, so it is likely that these unde-
sirable subsets emerge when the simulated annealing is trapped at a
local maximum. This can occur despite the fact that the simulated
annealing algorithm has provisions to continue exploring the color
space, even when local maxima are hit. Another issue is that since
aesthetic value is difficult to encode as a numeric feature, and thus
was not included as part of our heuristic, a high heuristic score does
not necessarily mean the palette is aesthetically pleasing. A user
may have to go through several rounds of palette generation with
the same parameters before an attractive palette is obtained.

From our work, it can be realized that evaluating a palette’s over-
all “quality” with a score is nontrivial. Expert designers who cre-
ate color palettes for visualizations consider many factors beyond
what we have encoded in our heuristic function. For designers who
require good color schemes without the time expense associated
with handpicking colors for the most optimal palette, we believe
our color palette generation system can be used for its efficiency
and effectiveness.

6 Future Work

We have several ideas on how to build upon the work that has been
presented here.

6.1 Heuristic Modules and Weights

Potential work could be done with regards to adjustments to the
weights of the scoring function. Weights and values are subjectively
chosen and attempt to optimize palettes that cater to a variety of au-
diences and users. Using machine learning or supervised learning,
weights and other values can be learned and automatically adjusted
based on user preference. In particular, one could train the system
to adapt to a user’s preferences by showing two different palette
choices multiple times, then adjusting and saving the weights based
on their choices. For future use, especially if implemented using
the Flare visualization library, these weights can be passed in as pa-
rameters so the system does not have to be continuously retrained.

In addition, the library has been developed such that new modules
can be added with ease. Modules may be created in response to
new work in color representation, newfound color guidelines, or
the changing preferences of a target audience.

6.2 Aesthetics and “Frozen Colors”

Often, palette designers are highly selective about the colors they
wish to use. Our system may try its best to follow color use guide-
lines, but it currently cannot consider the aesthetics of palettes it
creates. One could imagine drawing from a source of color aes-
thetics guidelines to complement our heuristic. However, it should
be noted that aesthetics are very subjective and even this approach
would not be guaranteed to produce palettes that are aesthetically
pleasing to all people.

Alternatively, our graphical frontend to the system could provide a
way for users to specify which colors they definitely want in their
palette and which they do not care for. This could be done by allow-
ing users to “freeze” colors after a palette is generated and then run
the generation again with those colors protected from perturbation.

6.3 Improved Termination Condition

Currently, our simulated annealing terminates at a set number of
rounds. A better solution would be to stop when a certain score
threshold is crossed, when perturbations are detected to do more
harm than good to the palette’s score, or when perturbations have
little effect on the score.

Another approach would be to determine an appropriate minimum
number of rounds of simulated annealing to run. This could be
accomplished by running many trials where scores are recorded at
each round. These records could then be examined to figure out
where scores typically converge, leading to an ideal baseline of it-
erations.

6.4 Using Data

We note that some of Brewer’s Color Use Guidelines [Brewer 1999]
require a palette to be judged in context with the data that the colors
are going to be encoding. For example, Brewer suggests using sat-
uration to emphasize smaller categories as they are naturally hard
to see on a graphic.

Currently, our algorithm produces palettes with no consideration of
the data they will be used to encode. In addition, the colors are
displayed in the style of a legend, which Brewer warns is a poor
view for palette evaluation. These issues can be addressed with one
of two methods.

One would be to do as Brewer herself does and generate fake data to
visualize with the palettes. This would involve dynamically gener-
ating fake data for each palette generation or loading a prepared set
of fake data as part of the application. However, this does not factor
into the algorithm and may require users to run the algorithm many
times over to find a palette that works with a data set that they would
not even use. Alternatively, real data sets could be passed into the
algorithm to be analyzed as part of a heuristic module. This would
require much overhead in data processing, which may not be de-
sired in a package such as ours. However, it does open the doors
to many possibilities for data analysis to play a role in determining
which colors should be placed near each other on a graphic, which
our algorithm currently cannot consider.

7 Conclusion

We have presented a method for algorithmically generating origi-
nal, high-quality color palettes for use in nominal (categorical) en-
codings. We have applied the technique of simulated annealing to
traverse the space of color palettes iteratively, using a heuristic to



score palettes and work our way towards palettes that follow sound
color use guidelines.

Our novel method for iterating through the space of color palettes
is a modified version of the simulated annealing algorithm that is
affected by the palette options it is initialized with. While based
on a randomized search, our iterative process begins with palettes
that are not actually random; rather, they are tailored to the user’s
preferences for color harmony. In addition, the amounts by which
we perturb color values are dependent on this preference as well.

We have also introduced a modular heuristic function that is able
to score palettes based on many sound color use guidelines. This
heuristic could possibly be used in other applications to judge the
quality of a color palette used for visualizations.

This work is presented as an extension to the Prefuse/Flare visual-
ization library by Jeffery Heer, and we hope that it can be useful to
anyone using the library to create visualizations requiring color as
an encoding for nominal variables.

Acknowledgements

We thank Professor Maneesh Agrawala for allowing us to produce
this system as part of a graduate course on visualization. We also
thank Jeffery Heer for his Prefuse/Flare toolkit, on which this sys-
tem and graphical frontend is built.

References

ADOBE, 2008. Kuler. http://kuler.adobe.com.

BERGMAN, L. D., ROGOWITZ, B. E., AND TREINISH, L. 1995.
A rule-based tool for assisting colormap selection. In IEEE Vi-
sualization, 118–125.

BREWER, C. A., AND HARROWER, M. A., 2002. Colorbrewer.
http://www.colorbrewer.org.

BREWER, C. 1999. Color use guidelines for data representation.
In Proceedings of the Section on Statistical Graphics, American
Statistical Association, 55–60.

HEER, J., CARD, K., S., LANDAY, AND A., J. 2005. prefuse:
a toolkit for interactive information visualization. In Proceed-
ings of ACM CHI 2005 Conference on Human Factors in Com-
puting Systems, vol. 1 of Interactive information visualization,
421–430.

MICHELSON, A. 1927. Studies in Optics. U. of Chicago Press.

SHARKD, 2008. Comparison of the hsl and hsv color spaces when
mapped to a cylinder, with corner cut-away shown.

STOKES, M., ANDERSON, M., CHANDRASEKA, S., , AND
MOTTA, R., 1996. A standard default color space for the internet
- srgb. http://www.w3.org/Graphics/Color/sRGB.

TOMINSKI, C., FUCHS, G., AND SCHUMANN, H. 2008. Task-
driven color coding. In IV, IEEE Computer Society, 373–380.

WEBSITETIPS.COM, 2008. Color scheme chooser. http://
websitetips.com/colortools/sitepro.

WRONGDIAGNOSIS.COM, 2008. Prevalence and incidence of
color blindness. http://www.wrongdiganosis.com/
c/color_blindness/prevalence.htm.

YIM, K., 2008. Interactive table of nuclides. http:
//vis.berkeley.edu/courses/cs294-10-fa08/
wiki/index.php/A3-KetrinaYim.



Figure 8: Samples of generated palettes applied to a table of nuclides implemented in Flare.



Figure 9: Additional samples of generated palettes applied to the table of nuclides.


