Using Space Effectively: 2D

Maneesh Agrawala

CS 294-10: Visualization Fall 2008

Topics

Displaying data in graphs Banking to 45 degrees Fitting data and depicting residuals Displaying multidimensional data Graphical calculations Zooming and distortion

Graphs and Lines

Both increase visual resolution

- Log scale easy comparisons of all data
- Scale break more difficult to compare across break

Aspect-ratio banking techniques

Median-Absolute-Slope

 $\alpha = \text{median} | s_i | R_x / R_y$

Average-Absolute-Orientation Unweighted

$$\sum_{i} \frac{|\theta_i(\alpha)|}{n} = 45^\circ$$

Weighted

$$\frac{\sum_{i} |\theta_{i}(\alpha)| l_{i}(\alpha)}{\sum_{i} l_{i}(\alpha)} = 45^{\circ}$$

Average-Absolute-Slope

 $\alpha = \text{mean} \mid s_i \mid R_x / R_y$

Max-Orientation-Resolution Global (over all i, j s.t. $i \neq j$)

$$\sum_{i}\sum_{j}|\theta_{i}(\alpha)-\theta_{j}(\alpha)|^{2}$$

Local (over adjacent segments)

$$\sum_{i} |\theta_{i}(\alpha) - \theta_{i+1}(\alpha)|^{2}$$

Discussion

Due to computational complexity... Prefer avg-slope to avg-weighted-orient Prefer avg-orient to global-orient-resolution

But due to perceptual effectiveness...? Cleveland recommends weighted-avg-orient But, goal is to maximize discriminability

Perceptual experiments needed to clarify

Most powerful brain?

Ele Edit View Insert Fo						Tools	Data	Mindow	Help	- 8		
-	A			B	IU III	1	С	-	D	E	-	
1		Nam				Body		Brain	Weight		-	
2				t-tailer	Shrew		Ę		0.14			
3	2	Little	Brown	Bat			10		0.25			
4	3	Mous	8				23 0.3					
5		Big Brown Bat					23		0.4			
6		Musk Shrew					48		0.33			
7	6	Star Nosed Mole					60		1			
8	7	Eastern American Mole				-	75		1.2			
9	8	Ground Squirrel					101		4			
10		Tree Shrew					104		2.5			
11	10	Golden Hamster					120		1		_	
12	11	Mole	Rate				122		3			
13	12	Galac	0				200		5			
14	13	Rat					280		1.9			
15	14	Chinc	hilla				425		6.4			
16	15	Desert Hedgehog				550		2.4				
17	16	Rock Hyrax (a)					750		12.3			
18	17	European Hedgehog					785		3.5			
19	18	Tenrec					900		2.6			
20				nd Squ			920		5.7			
21	20	Africa	n Giar	t Pouc	hed Rat		1000		6.6			
22	21	Guine	a Pig				1040		5.5			
23		Moun		rever			1350		8.1			
24	23	Slow	Loris				1400		12.5			
25	24	Gene					1410		17.5			
26	25	Phala	nger				1620		11.4			
14 4		anir	nal /			10	1			1	11	

