Using Space Effectively: 2D

Maneesh Agrawala

CS 294-10: Visualization
Fall 2008

Assignment 3: Visualization Software

Create an interactive visualization application - you choose data domain and visualization technique.

1. Describe data and storyboard interface due Oct 1 (before class)
2. Implement interface and produce final writeup due Oct 13 (before class)
3. Submit the application and a final writeup on the wiki

Can work alone or in pairs
Final write up due before class on Oct 13, 2008

Topics

Displaying data in graphs
Banking to 45 degrees
Fitting data and depicting residuals
Displaying multidimensional data
Graphical calculations
Zooming and distortion

Effective use of space

Which graph is better?

Government payrolls in 1937 [How To Lie With Statistics. Huff 93]

Aspect ratio

Fill space with data
Don't worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Clearly mark scale breaks

Scale break vs. Log scale

[Cleveland 85]

Scale break vs. Log scale

[Cleveland 85]
Both increase visual resolution

- Log scale - easy comparisons of all data
- Scale break - more difficult to compare across break

Linear scale vs. Log scale

Linear scale vs. Log scale

Linear scale

- Absolute change

Log scale

- Small fluctuations
- Percent change $d(10,20)=d(30,60)$

Semilog graph: Exponential growth

Exponential functions $\left(\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}\right.$) transform into lines
$\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$
Intercept: $\log (\mathrm{k})$
Slope: $\quad \log (a) m$

$y=6^{0.5 x}$, slope in semilog space: $\log (6)^{*} 0.5=0.3891$

Semilog graph: Exponential decay

Exponential functions $\left(\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}\right.$) transform into lines $\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$ Intercept: $\log (\mathrm{k})$
Slope: $\quad \log (a) m$

$y=0.5^{2 x}$, slope in semilog space: $\log (0.7) * 2=-0.3098$

Semilog graph: Lines

Exponential functions $\left(\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}\right.$) transform into lines
$\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$ Intercept: $\log (\mathrm{k})$
Slope: $\quad \log (a) m$

$\mathrm{y}=\mathrm{x}$, slope in semilog gives instantaneous : $\log (\mathbf{a}) \mathrm{m}$

Semilog graph

Exponential functions $\left(\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}\right.$) transform into lines $\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{m} \mathrm{x}$

SARS cases up March - July 7, 2003 http://www.squeak.org/us/ted/sars-graph.html

AIDS Cases: http://www.righto.com/java/statsgraph.html

Log-Log graph

Power functions ($\mathrm{y}=\mathrm{kx}^{\mathrm{a}}$) transform into lines
Example - Steven's power laws:

$$
S=k l^{p} \rightarrow \log S=\log k+p \log I
$$

Banking to 45 Degrees

Aspect ratio

Fill space with data
Don't worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Banking to 45 degrees

Two segments are maximally discriminable when avg absolute angle is 45°

Optimize the aspect ratio by banking to 45°

Aspect-ratio banking techniques

Median-Absolute-Slope

$$
\alpha=\operatorname{median}\left|s_{i}\right| R_{x} / R_{y}
$$

Average-Absolute-Orientation Unweighted

$$
\sum_{i} \frac{\left|\theta_{i}(\alpha)\right|}{n}=45^{\circ}
$$

Weighted

$$
\frac{\sum_{i}\left|\theta_{i}(\alpha)\right| l_{i}(\alpha)}{\sum_{i} l_{i}(\alpha)}=45^{\circ}
$$

Average-Absolute-Slope

$$
\alpha=\operatorname{mean}\left|s_{i}\right| R_{x} / R_{y}
$$

Max-Orientation-Resolution Global (over all i, j s.t. i: $\neq \mathrm{j}$)

$$
\sum_{i} \sum_{i}\left|\theta_{i}(\alpha)-\theta_{j}(\alpha)\right|^{2}
$$

Local (over adjacent segments)

$$
\sum_{i}\left|\theta_{i}(\alpha)-\theta_{i+1}(\alpha)\right|^{2}
$$

Slopeless line culling

Standard, Aspect Ratio = 1.97
Culled, Aspect Ratio = 4.00

Exclude line segments with zero or infinite slope

Comparison (Results)

Discussion

Due to computational complexity...
Prefer avg-slope to avg-weighted-orient
Prefer avg-orient to global-orient-resolution
But due to perceptual effectiveness... ?
Cleveland recommends weighted-avg-orient But, goal is to maximize discriminability

Perceptual experiments needed to clarify

Applications

Small Multiples Displays Trend Explorer

Sparklines
Banking can be applied to create sparklines, data-intense, word-sized graphics. A plot might be included inline womblumevilid, supporting uninterrupted reading

VFINX		119.27	
GOOG		27.14	
MSFT			
YHOO			

Fitting the Data

Transforming data

How well does curve fit data?

[Cleveland 85]

Transforming data

Residual graph

- Plot vertical distance from best fit curve
- Residual graph shows accuracy of fit

[Cleveland 85]

Most powerful brain?

The Dragons of Eden [Carl Sagan]

