Visualization of Stereoscopic Distortions: Project Proposal

Robin Held CS 294-10: Visualization 10/24/07

Traditional 3d Displays:

- Common theme: one image to each eye
 - Binocular disparity
 - Example: Anaglyph displays

- Problem of Interest:
 Stereoscopic photographs
 and many 3d displays suffer
 from distortions
- How can we quantify and predict the distortions?
 - Begin with a model

294-10 Final

3D Displays: From Capture to Observation

1. Object space -> CCD

2. CCD -> Picture

Magnification from CCD sensor to screen:

3. Picture -> Retinal Images

4. Retinal Images -> Interpretation

Robin Held, CS 294-10 Final Project Proposal

Disparity-Based Distortions

Capture and Viewing Effects

Viewing Conditions:

Existing Literature

- Analysis in XZ plane
- Case 1:
 - Parallel cameras
 - Camera spacing ≠ IPD
 - No projector offset

Screen surface

Existing Literature

Case 2: Offset the eyes by 300 mm

Similar Work

- Distortion of size and shape
 - Masaoka, K., et al., "Spatial distortion prediction system for stereoscopic images." Journal of Electronic Imaging, 2006. 15(1): p. 13002-13002.
 - Wartell, Z., L. F. Hodges, et al. (2002). "A geometric comparison of algorithms for fusion control in stereoscopic HTDs." IEEE Transactions on Visualization and Computer Graphics 8(2): 129-143.
 - Yamanoue, H., et al., "Geometrical analysis of puppet theater and cardboard effects in stereoscopic images." J. Inst. Image Inf. TV Engineers, 2002. 56(4): p. 575–582.
 - Yamanoue, H., M. Okui, and I. Yuyama, "A study on the relationship between shooting conditions and cardboard effect of stereoscopic images." Circuits and Systems for Video Technology, IEEE Transactions on, 2000. 10(3): p. 411-416.

Proposed Project

- Create interface that allows the user to change various acquisition and viewing parameters and observe the effect on the perceived stimulus
- Design the interface for use as a demo of the concept of stereoscopic distortions
- Use 3D stimuli, so distortions of entire volumes can be explored
 - Significant improvement over previous implementations
- Update in real time
- OpenGL, Cocoa-based interface
- Demo

Expected Hurdles

- Intuitive design
- Effective management of space
- Large number of variables
 - Capture: Camera orientation, spacing
 - Presentation: Screen Size
 - Viewing: Viewer location/orientation, interpupillary distance
- OpenGL programming
 - Level of detail
- Distortion of individual points over stimulus surface

Milestones

- 1. Preliminary code already in place
- 2. Add other 3D stimuli
- 3. More clearly indicate capture and viewing objects within the OpenGL view
- 4. Reassess layout of controls
- 5. Create interactive tutorial
 - Add educational aspect to the visualization