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Abstract 
 

Stereoscopic displays are becoming more common in fields as 
diverse as medical imaging and oil exploration.  However, to 
ensure the usefulness of such displays, it is important to minimize 
any visual misperceptions experienced by their potential users.  
We present a novel graphical user interface designed for the 
exploration of misperceptions of stereoscopic images.   The 
software includes controls for stimulus, image acquisition, and 
viewing parameters.  As these settings are adjusted, the user can 
see their effects on the predicted stereoscopic percept in real time.  
The software employs two models for stereoscopic distortions to 
generate these predictions; one based purely on geometry and 
found throughout the stereocinema literature, and the other based 
on higher perceptual processes within the visual system.  We 
demonstrate the software’s utility in discovering various types of 
distortions that arise from improper image acquisition and 
viewing conditions.  We believe this functionality would be useful 
for engineers who wish to optimize 3D displays for specific 
viewing situations. We also demonstrate how the software can be 
used to explore the differences between the two models of 
stereoscopic misperceptions, and suggest a way to test each 
model’s accuracy against psychophysical data from human 
observers. 
 
CR Categories and Subject Descriptors: I.3.7 [Computer  
graphics]: Virtual Reality, I.3.1 [Computer graphics]: Three-  
Dimensional Displays.  
 
Keywords:  Depth perception, Virtual Reality, 3D displays, 
Visualization 
 
1. Introduction 

 
Visual displays such as photographs, video, and animations are 
essential for communicating ideas and information.  Most displays 
are two-dimensional (2d), but very useful information can be 
added by three-dimensional (3d), stereoscopic displays. Such 
displays are now making their way into areas ranging from cinema 
[1] to medical imaging [2-5].  As the use of stereoscopic displays 
has spread, the benefits and problems associated with their use 
have become clearer.  One well-documented problem is that the 
perception of 3d shape and scene layout is often distorted.  For 
instance, standing too close or too far away from a stereoscopic 
display can alter the perceived size and shape of an object [6, 7].  
In some applications, such as cinema, the distortions are not 

necessarily a serious problem for the designer [1], but in other 
applications, such as medical imaging, they can have grave 
consequences.  As a first step to analyzing the sources of 
stereoscopic distortions, it is important to understand the 
processes used to produce 3D images.  

There are three steps involved in producing a stereoscopic 
image. (1) The images are acquired by stereo photography or 
generated by computer graphics. (2) Those images are presented 
stereoscopically to a human viewer.  The presentation requires a 
way to display the images separately to the two eyes (e.g., red-
green color filters, polarizers, or LCD shutter glasses). (3) The 
images are perceptually interpreted by the visual system.   

Misperceptions can arise in a variety of ways in 
implementing the steps above, but it is useful to distinguish two 
causes: geometric and perceptual.  Geometric misperceptions are 
caused by inappropriate acquisition-viewing relationships (steps 1 
& 2) that result in retinal images that are not the same as those 
produced by the original scene. Perceptual misperceptions are 
caused by interpretative processes in the viewer’s visual system 
(step 3): the retinal images may be geometrically correct, but they 
are misinterpreted. Keeping with many authors in the current 
virtual reality and stereocinema literature[1, 6-16], we concentrate 
on the geometric approach, but later return to the perceptual 
approach to complete our discussion of stereoscopic 
misperceptions. 

We present an interactive, graphical user interface for 
exploring the geometric approach to stereoscopic misperceptions.  
The program allows one to designate stimulus, acquisition, and 
viewing parameters.  It then displays the predicted perceived 
stimulus in real time.  The interactive nature of the visualization 
allows one to explore how various acquisition and viewing 
parameters affect one’s percept of a 3D stimulus.  It is hoped that 
the software could therefore be used as a tool for display 
engineers to design systems that avoid unnecessary stereoscopic 
misperceptions.  We also show how the software facilitated the 
discovery of some limitations of the geometric approach to 
misperceptions.  We discuss these limitations and possible ways 
to overcome them with a model more closely matched to the 
human visual system.  
 
2. Related Work: Geometric Approach 
 
Before showcasing the software package mentioned above, it is 
important to understand the basic concepts on which it was built.  
We begin with a derivation of the geometric approach to 
stereoscopic misperceptions.   In doing so, we rehash some of the 
derivations performed by Woods et al. [7], using similar variables 
and formulas.  The derivations allow one to begin with a single 
point’s 3d coordinates in “real space”, perform a series of 
transformations, and determine its 3d coordinates as perceived by 
someone viewing a stereoscopic display.   Multiple coordinate 
systems are necessary for these transformations, and they will be 
defined as needed. 

 
Step 1: Acquisition (Object space to 2d camera sensors).   
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Figure 2:  The cameras’ optical axes can be made to converge 
by laterally offsetting the sensor relative to the lens.  Here, h 
denotes the amount of sensor-lens offset.  Note that in a 
parallel optical axis setup, h is zero. 

Figure 1:  Converging cameras capturing a point in 3D space. 
Variables: po=coordinates of point P, f = camera focal length, 
t = camera spacing, C =convergence distance of camera 
optical axes, Vc = angle between cameras’ optical axes, Wc= 
width of camera sensor, Xcl and Xcr = x-coordinate of P’s 
projection onto the left and right camera sensors, respectively. 

The first step begins with a point, P, in 3d space and determines 
the 2d coordinates of its projection onto the sensors of a pair of 
stereoscopic cameras.  We begin with a 3d coordinate system, 
where X is the intercamera axis, Y is the vertical axis positioned 
at the midpoint between the cameras, and Z is orthogonal to X and 
Y.  P’s 3d X,Y,Z coordinates may be denoted collectively as po.  
P is projected onto two 2d coordinate systems—one for each 
camera sensor.  Within the sensors, Y is the vertical axis and X is 
the horizontal axis.  P’s coordinates on the left-hand camera’s 
sensors are denoted by Xcl and Ycl.  Likewise, the coordinates on 
the right-hand camera’s sensors are Xcr and Ycr.  

Several settings affect the projection of P onto the sensors.  
For instance, the cameras’ axes can be setup to be parallel or 
converging.  Both settings have benefits and drawbacks that are 
beyond the scope of the present discussion [1, 7, 13].  The other 
relevant parameters for our derivations are f, the focal lengths of 
the cameras, Wc, the width of the cameras’ sensors, t, the inter-
camera separation (between their optical centers), Vc, the angle 
formed by the camera’s optical axes, and h, the distance between 
the bisectors of a camera’s sensor and its lens.  We define the 
camera’s optical axis as a ray traveling from the center of its 
sensor through the center of its lens.  Therefore, even if the 
camera lenses are parallel, if h is nonzero, then their optical axes 
can be set to converge.  Alternatively, h can be set to zero and the 
lens and sensors can be physically rotated to converge the optical 
axes. See Figures 1 and 2 for a 2D illustration.   

Using the variables listed above with Figures 1 and 2, the 
following transformations can be derived:  

              
 

 
 
 
 
 
 
 
 
 
 
 

These equations apply for both parallel and converging optical 
axes.  If the cameras’ optical axes are parallel, Vc and h is set to 
zero.  We now have P’s 2D coordinates on the camera sensors.  
The next step is to present the images on a display. 
 
Step 2: Presentation (2d camera sensors to 2d projections).  
 
In the presentation step, P’s sensor coordinates (Xcl, Ycl and Xcr, 
Ycr) must be transformed to 2d picture coordinates (Xsl, Ysl and 
Xsr, Ysr).  The pictures are usually presented on a single display 
device such as an LCD, CRT, or projection screen.  In vision 
science, stereoscopic images are often presented on two separate 
displays, one for each eye, on a device known as a haploscope 
[17].    Here we provide derivations for single-surface displays, 
since they are far more common.  First, the pictures must be 
magnified to the desired size.  The key variable here is Wp, the 
width of each picture.  The simple ratio Wp/Wc provides the 
magnification from (Xcl, Ycl) and (Xcr, Ycr) to (Xsl, Ysl) and (Xsr, 
Ysr).  Additionally, the left and right eyes’ image may be 
displaced relative to each other on the surface of the display.  The 
size of the displacement will be denoted d.  The combination of 
the magnification and image offsets produces:  
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The 2D coordinates of the disparate points representing P on the 
display surface are now known. 
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Figure 3:  Here, rays are cast from the centers of the eyes and 
passed through disparate points on the display.  The predicted 
perceived location of P is assigned to the intersection point of the 
rays.  Variables:  el and er = 3d coordinates of the left and right 
eyes, respectively; pl and pr = location of P on the left and right 
eyes’ images; IPD = interpupillary distance; d = distance 
between centers of the stereoscopic pictures. 

Step 3: Viewing (2d projections to percept).  
 
The final step in the geometric approach uses the positions of the 
disparate points on the screen and the viewer’s eyes to predict the 
perceived 3D location of P.  We will use two new sets of X, Y, 
and Z-axes.  For the first set, we define X and Y as the horizontal 
and vertical axes on the surface of the display, respectively, while 
Z is orthogonal to X and Y.  The origin is located at the center of 
the display surface.  In this coordinate system the positions of the 
eyes are denoted by el and er.  The eye positions are affected by 
the viewer’s inter-ocular distance and the translation and rotation 
of his/her head relative to the display.  We also need XYZ 
coordinates of the disparate points on the display, which we 
denote pl and pr.  Since they lie on the display surface, their Z-
coordinates are all zero.  Their X and Y-coordinates are given by 
Xsl, Ysl and Xsr, Ysr.  Thus: 

 

! 

pl = (Xsl ,Ysl ,0)               

! 

pr = (Xsr ,Ysr ,0)  
 

Given el, er, pl, and pr, where does the viewer perceive P?  To 
answer this, the geometric approach projects rays that begin in the 
centers of each eye and pass through the disparate points on the 
screen. The perceived location of P is assigned to the point of 
intersection, which we will denote pi (see Figure 3).  However, if 
we use the current coordinate system to determine pi, we will have 
its coordinates relative to the display, not relative to the viewer.  
Thus, we want to transform el, er, pl, and pr in the display-centric 
3D coordinate system to e’l, e’r, p’l, and p’r in a viewer-centric 
system.  There, X is the interocular axis, Y is the vertical axis 
positioned midway between the eyes, and Z is orthogonal to X and 
Y.  To begin the transformation, the origin must be placed at the 
cyclopean eye (the point midway between the eyes, denoted as ec 
in the screen-centric coordinate system).  To accomplish this, ec 
must be subtracted from el, er, pl, and pr.  We then apply the 
following rotation matrix to make the X-axis coincident with the 
interocular axis: 
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The transformations from screen space to viewer space are thus: 
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" e l = R(#,$ )(el % ec )        
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" e r = R(#,$ )(er % ec ) 
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" p l = R(#,$ )(pl % ec )       

! 

" p r = R(#,$ )(pr % ec ) 
 

Now that we are working in a viewer-centric coordinate system, 
we can find the intersection of the rays originating at e’l and e’r 
and passing through p’l, and p’r.  The intersection can be found 
using: 
 

! 

" e l + ( " p l # " e l )u = " e r + ( " p r # " e r )v  
 

The terms (p’l – e’l)u and (p’r – e’r)v represent the rays leaving the 
centers of the eyes (e’l and e’r) and passing through the disparate 
points.  The variables u and v are used to indicate a specific point 
along those rays.  When the two sides of the equation are set equal 
to each other, one can find the point of intersection of the two 

rays, assuming it exists.  Straightforward mathematical 
manipulations produce the following solutions to u and v: 
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We can then determine p’i using 
 

! 

" p i = " e l + ( " p l # " e l )u        or       

! 

" p i = " e r + ( " p r # " e r )u  
 

These terms are identical if the intersection exists.  Later, the case 
of non-intersecting rays will be addressed.  We now have the 
perceived location of the original point P in a 3d coordinate 
system centered on the viewer’s cyclopean eye.  Misperceptions 
can be characterized as discrepancies between p’i and po. 

The comparison of p’i and po offers precise measurements of 
the geometric distortions produced by stereoscopic displays.  
Additionally, one can use the variables involved in the 
transformations from po to p’i to qualitatively interpret the optimal 
viewing conditions.  For instance, in stereoscopic presentation, 
each eye’s image has a center of projection (COP) whose position 
depends on the camera focal length and orientation of the camera 
optical axis relative to the film plane. The separation between the 
COPs depends on the inter-camera separation and image 
magnification and projector offset. In the geometric approach, two 
constraints must be satisfied for the predicted 3d percept to match 
the 3d layout of the original scene. 1) Both of the viewer’s eyes 
must be positioned at the appropriate COPs [12, 18]. When the 
eyes are positioned on the COPs, the pattern of light hitting the 
retinas is the same while viewing the original scene as it is while 
viewing the stereoscopic pictures. 2) The eye vergence (the angle 
between the eyes’ optical axes) required to fixate a point in the 
virtual scene must be the same as the vergence required to fixate 
the corresponding point in the original scene [12].  

We are most interested in what happens when the viewing 
conditions are not appropriate: specifically, when one or both eyes 
are not at the appropriate COPs and/or when the eye vergence is 
not appropriate. Incorrect positioning is commonplace with single-
viewer settings and necessarily occurs with multiple viewers. 
Custom, interactive software was written to explore these 
conditions and their implications to stereoscopic misperceptions. 
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Figure 4:  Stereo distortion visualization interface.  The GUI 
allows the user to modify stimulus, image acquisition, and 
viewing parameters independently while viewing the effects on 
the geometrically predicted perceived stimulus in real-time.  The 
perceived stimulus labeled “Geometric Approach” was 
implemented in Phase I.  In Phase II (discussed later), an 
alternative, “vertical disparity” approach to stereoscopic 
misperceptions was added.  The numerical values at the bottom 
of the main window were used for a psychophysical study beyond 
the scope of this article. 

 
3. Visualization Software (Phase I) 
 
Development of the visualization software proceeded in two 
phases.  The first phase involved the creation of the graphical user 
interface and implementation of the geometric approach to 
stereoscopic misperceptions.  As we discuss later, the program 
revealed some viewing situations where the geometric approach 
fails to produce a solution.  Phase II of the software development 
ensued, where alternative approaches to stereoscopic distortions 
were implemented in an effort to more adequately model the 
human visual system’s treatment of stereoscopic stimuli. 

The program (Figure 4) was comprised of C++, OpenGL, 
Objective-C, and Cocoa code.  The software allowed the user to 
set stimulus, acquisition, and viewing parameters.  Stimulus 
parameters included the size, position, and orientation of a planar 
stimulus.  Acquisition parameters included camera spacing, focal 
length, camera orientation (parallel or converging), optical axis 
convergence distance, convergence angle, and sensor-lens offset.  
Viewing parameters included image magnification, stereo 
projector offset, interpupillary distance, and viewer position and 
orientation (relative to display). 

To replicate the predictions of the geometric approach, the 
software uses the derivations outlined previously.  Specifically, 
the stimulus is represented as three 2D arrays of points.  Each 
array corresponds to the X, Y, or Z coordinate of a point in the 
stimulus.  2D arrays were chosen to facilitate the display of the 
stimuli as grids of points (see Figure 4).   The arrays of 
coordinates were fed into the equations derived in the “Related 
Work” section to determine the position of the points that would 
appear on a stereoscopic display.   These positions were then 
combined with the 3D coordinates of the eyes to produce pairs of 
rays whose intersections provided the predicted perceived 
locations of points within the stimulus (see Figure 3 for a 
reminder).  The software found the intersection point of these rays 
using the same mathematical approach derived in the previous 
section.    

Once the perceived locations of all the points in the stimulus 
was found, the software rendered the entire predicted perceived 
stimulus.  It was rendered in teal to allow easy discrimination 
from the original stimulus, which was rendered in white. On a 
MacBook Pro with a 2.33 GHz Dual-Core 2 CPU and 2 GB 
RAM, the mathematical operations necessary to produce the 
perceived stimulus were completed at a rate that allowed real-time 
manipulation of the various parameters.   

To validate the utility of the software, several viewing 
positions were investigated, including some that were previously 
known by the stereocinema community to produce 
misperceptions.  
 
4. Example Distortions 
 
4.1 Methods 
 
To test the visualization software, multiple acquisition and 
viewing conditions were explored.  In each case, a spherical 
stimulus measuring 20 cm in diameter was simulated 45 cm in 
front of the stereoscopic cameras.  In the proper viewing 
condition, that is, the situation predicted to produce no 
stereoscopic misperceptions, the following parameters were used: 
 

Acquisition Parameters: 
Camera configuration:  Parallel 
Camera spacing: 6.2 cm 
Camera focal length:  6.5 mm 
 
Viewing Parameters: 
Magnification from CCD image to display: 69.2x 
Stereo projector offset:  6.2 cm 
Viewing Distance: 45 cm 
Interpupillary distance: 6.2 cm 
Viewer position and orientation:  Face parallel with 
display, midpoint between eyes aligned with center of 
display. 

 
After the correct viewing situation was setup, we modified several 
variables independently to observe their effect on the perceived 
stimulus.  The modified variables were: (1) viewing distance, (2) 
left-right translation of observer parallel to surface of screen,  (3) 
camera spacing, (4) projector spacing, (5) camera orientation, and 
(6) oblique viewpoint. 
 
4.2   Results 
 

The results of our manipulations are shown in Figure 5.  Panel 
E shows the correct viewing situation, defined using the variables 
in the Methods section.  The images in Figure 5 are screen 
captures from the software.  The viewer is indicated by the pair of 
eyeballs near the bottom of each panel.  The stereocameras, which 
are sometimes occluded by the eyeballs, are represented by thin 
blue cylinders.  The red vertical lines indicate the cameras’ optical 
axes.  The original stimulus is drawn using white lines.  The 
predicted perceived stimulus is rendered in teal.  In panel E, the 
perceived stimulus is identical to the original stimulus, so only the 
latter can be seen.  Finally, the horizontal green lines represent the 
simulated display surface.  The lines were not visible in the 
original software, but were added here for clarification.  The 
software does have an option to render the stereoscopic images at 
the display location, but we have left them out to reduce visual 
clutter. The images in Figure 5 also include debugging messages 
near the top.  These are irrelevant to our current analysis and can 
be ignored. 
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Figure 5:  Screenshots from the stereoscopic distortion visualization software.  Each screenshot shows simultaneous overhead views of 
the acquisition and viewing setups.  Panel D includes labels for the observer, stereocameras, display surface, original stimulus, and 
perceived stimulus.  The vertical red lines indicate the cameras’ optical axes.  Panel E shows a correct viewing condition, where the 
perceived stimulus is identical to the original stimulus.  The acquisition and viewing parameters for the correct viewing situation are 
listed in the Methods section.  Panels B and H show the effect of placing the observer further away and closer to the display surface, 
respectively.  Panels D and F show the observer translated to the left and right.  Panels A and I show the effect of moving the cameras 
closer together and further apart, respectively.  In panels C and G, the distance between the centers of the left and right eyes’ images, 
also known as the projector offset, is increase and decreased.  The exact values for these modifications can be found in the methods 
section. 

As we step through the various altered acquisition and viewing 
parameters, there are a few aspects of the perceived stimulus that 
prove useful in characterizing the stereoscopic misperceptions.  
These are the distance of the perceived stimulus from the 
observer, the size of the perceived stimulus, and any change in the 
shape of the stimulus. 

In Figure 5, panels B and H show the result of moving the 
observer closer and further away from the display, respectively.  
The observer was placed 22.5 and 90 cm from the display.  When 
the observer is placed closer to the display, the stimulus appears 
closer to the viewer.  Additionally, its spherical shape is 
compressed in depth.  When the viewer is moved farther away 
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Figure 6:  Two planes defined using the centers of both eyes and 
either of the disparate points on the screen.  The cross-product of 
the vectors provides a normal vector that defines the plane. 

from the display surface, the stimulus appears further in the 
distance, with its shape stretched in depth.  These results are 
consistent with those of Woods et al. [7]. 

For Panels D and F, we translated the observer by 50 cm to the 
left and right of the optimal viewing position.  The translation was 
performed parallel to the display surface. Here, the most evident 
distortion is in the stimulus shape. The sphere appears to stretch 
toward the viewer.  This was also predicted by Woods et al. [7]. 

Panels A and I show the effect of camera spacing on 
stereoscopic misperceptions.  Referring back to the correct 
viewing situation, in panel E the camera spacing was equal to the 
interpupillary distance (6.2 cm).  In A, the cameras are spaced 3.1 
cm apart, and the result is a perceived stimulus that is  larger and 
positioned farther away the view than the original stimulus.  When 
the cameras are spaced 12.4 cm apart (panel I), the stimulus is 
perceived as smaller and closer than the original.  Again, this 
matches the results of Woods et al [7]. 

Panels C and G demonstrate the effect of projector spacing.  
Here, the projectors presenting the left and right eyes’ images on 
the display are being shifted towards or away from each other.  In 
the correct viewing situation, the centers of the projector’s images 
are spaced 6.2 cm apart (the interpupillary distance).  By changing 
the spacing of the eyes’ images, we effectively increase or 
decrease all of the disparities in the image.  So in panel C, when 
the projectors are separated by 7.5 cm, the disparities are 
increased.  The result is a stimulus that is perceived farther away, 
with a shape that is stretched in depth.  Conversely, a projector 
spacing of 3.1 cm causes the stimulus to be perceived closer to the 
viewer, with a shape compressed in depth.  While Woods et al. do 
not specifically address these viewing situations, their published 
derivations lead to the same predictions [7]. 

The above conditions were effective at demonstrating the 
utility of the software to explore several causes of stereoscopic 
image misperceptions.  As we have mentioned several times, the 
predictions produced by the software were identical to those 
already found by researchers in the stereocinema community.  
However, when we ran the converging cameras and oblique 
viewing conditions, the software revealed a crucial flaw in the 
geometric approach to stereoscopic misperceptions. 

When the cameras were set to converge or the observer was 
set to view the display obliquely, the geometric approach could 
not provide a mathematical solution to the predicted perceived 
stimulus.  The issue appears to stem from the ray-intersection step.  
When converging cameras capture stereo images that are then 
displayed on a single surface, there are several disparate points 
that lead to skew rays—that is, rays that are not parallel and do not 
intersect.  Obliquely viewing a stereoscopic image generated by 
either converging or parallel cameras also produces skew rays.  In 
fact, the only rays that seemed to be solvable are those than lie in 
the visual plane (the X-Z plane, using our last coordinate system).  
This intriguing result led to an investigation into the conditions 
necessary to produce skew rays and their effect on human depth 
perception. 

 
5.    Analysis of Skew Rays 

 
To fully address the topic of skew rays, we begin by using our 

derivations in the Related Work section to prove their existence 
under certain viewing conditions.  We follow this with a more 
general way of understanding skew rays using the geometric 
properties of the viewing environment.  Ultimately we show that 
vertical disparities are the cause of skew rays, and we show how 
the current stereoscopic literature has dealt with them, as well as 
how the visual system is believed to use them to form 3D 
percepts.  

 

5.1 Mathematical Analysis 
 
The problem at hand is the lack of intersecting points for the rays 
that emanate from the centers of the eyes and pass through the 
disparate points on a stereoscopic display.  As a reminder, the 
intersection points represent where the viewer is expected to 
perceive a given set of 3D points when they are presented on a 
stereoscopic display.  So if the rays are skew, the geometric 
approach cannot technically predict what the viewer will see the 
3D points. We return to our previously derived equations for these 
rays to prove that some image acquisition and viewing conditions 
produce skew rays.  Remember that, for a given 3D point in a 
stereo image, the terms (p’l – e’l)u and (p’r – e’r)v represent the 
rays, where p’l  and p’r are the positions of the left and right eyes’ 
disparate points, respectively, and  e’l and e’r represent the left and 
and right eyes.  These points are all represented in the viewer-
centered coordinate system defined earlier.  In order for two rays 
to intersect, it can be shown that the rays must not be parallel and 
must lie in the same 3D plane.  Thus, proof of an intersection (or 
no intersection) for two rays can be accomplished by determining 
if the two rays lie in the same 3D plane.  We accomplish this by 
finding the planes defined by the two eyes and the left disparate 
point, and then the plane define by the two eyes and the right 
disparate point (Figure 6). We then determine if these two planes 
are coincident.  If they are coincident, then the rays will intersect, 
assuming they are not parallel. 

To define the planes, we use cross-products.  The first plane is 
defined by the cross product between two vectors that originate at 
the left eye and extend to the left disparate point (vl1) and to the 
right eye (vl2) (Figure 6). The second plane is defined as the cross 
product between the vectors originating at the left eye and 
extending to the right disparate point (vr1) and to the right eye 
(vr2).  

 
 
 
 
 
 
 
As stated earlier, we want to know the viewing conditions that 

produce skew rays.  In order to do so, it would be helpful for our 
analysis to include terms for the translation and rotation of the 
viewer.  This can be accomplished by replacing  p’l  and p’r with: 

 

! 

" p l = R(#,$ )(pl % ec )       

! 

" p r = R(#,$ )(pr % ec ) 
 

Now we can account for the position of the disparate points on the 
screen, as well as the position of the viewer relative to the screen.  
Also for simplicity it is useful to refer to the interpupillary 

! 

vl1 = " p l # " e l

vl 2 = " e r # " e l

vr1 = " p r # " e l

vr2 = " e r # " e l
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distance as I.  Then vl2 and vr2 can both be expressed as (I, 0, 0).  
Combing the equations above, multiplying out the elements of 
R(β,γ), and taking into account the fact that pl(z) and pr(z) are both 
zero (see Related Work) produces the following equations for the 
cross-products: 

 
We now have a representation for the two planes.  Both of the 
cross-products are defined using a surface normal originating at 
e’l.  However, before we test if the two cross-product are equal, 
we need to account for the fact that these planes can be coincident 
but have normal vectors with different magnitudes.  We can 
correct for this by normalizing the vectors and dividing them by 
the magnitudes |vl1 × vl2| and |vr1 × vr2|.  Next, to determine if the 
planes are coincident, we check to see if their j and k terms are 
equal to each other (there are no i terms in the equations above).  
The j terms are: 
 

 
 
 
 
 

 
 
 
and the k terms are:  

 
We now have two equalities that can be used as tests for 
intersecting rays.  If the equalities are valid, then the rays will 
intersect, again assuming that they are not parallel.  If they are not 
valid, then we have found a situation with skew rays and therefore 
no solution to the geometric approach.  We now explore four 
acquisition and viewing situations. 
 
Condition 1:  No Observer Rotation 
 
In the first viewing condition, the viewer’s face is parallel to the 
display surface.  Additionally, the interocular axis is parallel to the 
y = 0 line on the display surface.  The position of the viewer can 
be translated in any direction relative to the display.  In this 
condition, the variables β and γ in the rotation matrix R(β,γ) are 
set to 0.  As a result, our dual equalities can be rewritten as: 
 

Examining the equations above, it is clear that the two equalities 
are only valid if the y-coordinates of the disparate points on the 
screen are equal.  This is always the case when the images are 
captured using parallel cameras or cameras whose optical axes are 
set to converge by offsetting the image sensor from the lens.  We 
can therefore conclude that under those capture conditions, when 
the viewer’s face is not rotated relative to the display, there will be 
intersections for all of the ray pairs and the geometric approach 
will provide a solution. 
 
Condition 2:  Observer Rotation in X-Z Plane 
 
Here we begin with the same viewing orientation as in Condition 
1, and then rotate (or “yaw”) the viewer in the X-Z plane.  Thus, γ 
is still zero, but now β is nonzero.  Our equalities then become: 

 
In this case, the only situation in which the equalities are valid is 
when pl(y) and pr(y) are equal to ec(y).  Simply put, that means 
that for oblique viewing, only points with no disparity, or  
disparate points that are located in the visual (X-Z) plane, will 
produce rays that intersect.  All pairs of points with non-zero 
disparity above and below the X-Z plane will produce skew rays.  
This explains why the first verion of our visualization software 
failed to produce solutions under such conditions. 
 
Condition 3:  Observer Rotation in X-Y Plane 
 
This viewing situation is similar to condition 2, except now the 
viewer’s head is rotated (or “rolled”) in the X-Y plane.  Now, γ is 
nonzero, and β is zero.  This results in: 

 
This appears to be the most restricted case.  Looking closely at 
these terms, it becomes evident that the equalities are only valid if 

! 

vl1 " vl 2 = j (I (sin(#)cos($ )(pl (x)% ec (x)) +

sin(#)sin($ )(pl (y)% ec (y))+ cos(#)(%ec (z))))

+k(I (sin($ )(pl (x)% ec (x)) + cos($ )(pl (y)% ec (y))))

vr1 " vr2 = j (I (sin(#)cos($ )(pr (x)% ec (x))

+sin(#)sin($ )(pr (y)% ec (y))+ cos(#)(%ec (z))))

+k(I (sin($ )(pr (x)% ec (x)) + cos($ )(pr (y)% ec (y))))

! 

(sin(")cos(# )(pl (x)$ ec (x))

+sin(")sin(# )(pl (y)$ ec (y))+ cos(")($ec (z)))

=
v1r % v2r

v1l % v2l
(sin(")cos(# )(pr (x)$ ec (x))

+sin(")sin(# )(pr (y)$ ec (y))+ cos(")($ec (z)))

! 

(sin(" )(pl (x)# ec (x)) + cos(" )(pl (y)# ec (y)))

=
v1r $ v2r

v1l $ v2l
(sin(" )(pr (x)# ec (x)) + cos(" )(pr (y)# ec (y)))

! 

"ec (z) =
v1r # v2r

v1l # v2l

("ec (z))),

pl (y)" ec (y) =
v1r # v2r

v1l # v2l

(pr (y)" ec (y))

where 
v1r # v2r

v1l # v2l

=
j (I ("ec (z)) + k(I (pl (y)" ec (y)))

j (I ("ec (z)) + k(I (pr (y)" ec (y)))

! 

sin(")(pl (x)# ec (x)) + cos(")(#ec (z)) =

v1r $ v2r

v1l $ v2l

(sin(")(pr (x)# ec (x)) + cos(")(#ec (z)))

pl (y)# ec (y) =
v1r $ v2r

v1l $ v2l

(pr (y)# ec (y)),

where 
v1l $ v2l

v1r $ v2r

=
j (I (sin(")(pl (x)# ec (x)) + cos(")(#ec (z)))) + k(I (pl (y)# ec (y))

j (I (sin(")(pr (x)# ec (x)) + cos(")(#ec (z)))) + k(I (pr (y)# ec (y))

! 

"ec (z) =
v1r # v2r

v1l # v2l

("ec (z))

(sin($ )(pl (x)" ec (x)) + cos($ )(pl (y)" ec (y)))

=
v1r # v2r

v1l # v2l

(sin($ )(pr (x)" ec (x)) + cos($ )(pr (y)" ec (y))),

where 
v1l # v2l

v1r # v2r

=
j ("ec (z)) + k((sin($ )(pl (x)" ec (x)) + cos($ )(pl (y)" ec (y))))

j ("ec (z)) + k((sin($ )(pr (x)" ec (x)) + cos($ )(pr (y)" ec (y))))
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Figure 7:  The keystone effect.  A rectangular grid was captured 
using converging cameras and is now being displayed on a 
single, flat display surface.  Note the vertical disparities between 
the disparate points in the corners. 

Figure 8:  Epipolar geometry. A) In a real scene, a single point 
and the centers of each point define an epipolar plane.  B) If a 
viewer is correctly positioned relative to a stereoscopic display, 
the rays emanating through the eyes and passing through a pair 
of disparate points will lie in the same epipolar plane and 
intersect at some point in space.  C) If the observer views the 
screen obliquely the rays will often lie in different epipolar 
planes and never intersect. 

pl is identical to pr.  In other words, any non-zero disparities will 
produce skew rays if the head is rolled relative to the display. 
 
Condition 4:  Converging Cameras 

 
Our final condition concerns the use of converging cameras to 
capture stereoscopic pictures.  Woods, et al. [7] point out that 
while the imaging sensors of converging cameras lie in different 
planes, the resulting stereoscopic images are displayed on a single 
plane, unless a haploscope is being used. As a result of this 
mismatch, the left and right stereoscopic images resemble 
trapezoids, as demonstrated in Figure 7.  This is known as the 
“keystone” distortion, and it creates vertical mismatches between 
disparate points that lie away from the y = 0 line on the surface.  If 
we interpret this fact in the context of the conclusions from 
Condition 1, then we can conclude that the disparate points that do 
not like on y = 0 will produce skew rays.  This is why our initial 
visualization software could not produce a solution for converging 
camera situations.  
 
5.2 Geometric Analysis:  Epipolar Planes 
 
Epipolar geometry provides an intuitive way to understand the 
presence of skew rays in stereoscopic pictures.  An epipolar plane 
is the plane containing the optical centers of both eyes and a point 
in the visual scene. Thus, a ray from a scene point to the left eye 
and a ray from the same point to the right eye will always lie in 
the same epipolar plane (see Figure 8).  Those rays are guaranteed 
to intersect, provided that they are not parallel.  Now consider a 
viewer who is looking at a stereoscopic picture with his or her 
eyes (e’l and e’r) positioned at the COPs. A ray from the left eye 
to point p’l, and a ray from the right eye to point p’r are identical 
to the rays that would have passed from the eyes to the original 
point, P, so they too will lie in an epipolar plane and will intersect 
at P in virtual space.  In other words, p’i and po are identical. 

Now consider a viewer whose eyes are not at the COPs. We 
will refer to the line segment between the COPs as the inter-COP 
axis. If the viewer is translated from the correct position 
(Condition 1 above), the inter-ocular axis will be parallel to, but 
not coincident with, the inter-COP axis. In such cases, rays from 
the two eyes to image points still lie in a common epipolar plane, 
so they will intersect in space, again provided that they are not 
parallel. Therefore, a geometric solution exists for the estimated 
position of P. If the viewer is rotated from the correct position, the 
inter-ocular axis is often not coincident and not parallel with the 
inter-COP axis. In particular, if the viewer’s head is rotated about 

the vertical axis (yaw, Condition 2) or about the forward axis (roll, 
Condition 3), the axes will be neither coincident nor parallel. If 
the viewer’s head is rotated about the horizontal inter-ocular axis 
(pitch), the two axes remain coincident.  With yaw and roll 
rotations, we showed mathematically that for most cases, the two 
rays no longer lie in an epipolar plane. Therefore, the rays will 
generally not intersect in space and no geometric solution exists 
for the position of P (see Figure 8). This further illustrates that the 
geometric approach does not always provide a solution for the 
location of points displayed in stereoscopic pictures, especially 
when multiple viewers are involved.  
 
5.2  Make-Shift Solution to Skew Rays 
 
At this point it is important to note that human observers usually 
report a cohesive 3D percept in each of the conditions that 
produce skew rays.  In other words, the geometric approach fails 
to predict what people perceive.  How has this issue been 
addressed in the current literature? 

Some papers in the graphics literature have noted the 
existence of skew rays in some stereoscopic viewing situations 
[18, 19], but they have either limited their analysis to situations in 
which skew rays do not occur [6, 8-12, 16] or have modified the 
geometric approach in a possibly unwise fashion to take skew rays 
into account [7].   They accomplish this by first projecting the 
skew rays onto the X-Z plane.  Since the rays are now in a single 
plane, as long as they are not parallel, their intersection point can 
be determined.  The intersection is found in terms of coordinates 
we will call (X1,Z1).  To determine the Y-coordinate of the skew-
rays’ intersection, the original rays are used.  The Y-coordinates 
on each ray associated with (X1,Z1) are averaged to produced one 
Y1 value. (X1,Y1,Z1) then defines the intersection of the skew rays, 
and is assigned to p’i.  This approach could be correct, but it has 
not been validated with psychophysical testing. 
 
5.3  Vertical Disparity 
 
Up to this point, we have focused on the geometric approach to 
stereoscopic misperceptions.  However, we have shown that this 
approach is insufficient to fully characterize human perception.  
Therefore, we turn to a more perceptual approach to bolster our 
ability to model stereoscopic picture perception.  Vision science 
informs us about how the visual system deals with the geometric 
issue of skew rays in the case of vertical disparity.  Vertical 
disparity can be defined as a discrepancy between an object’s 
vertical retinal coordinates in each eye.  Vertical disparity has 
been shown to have an important role in human stereopsis in such 
cases as the induced effect [20] and distance scaling [21, 22].  The 
induced effect arises when one places a vertical magnifier in front 
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Figure 9:  Conventions used by Backus et al. (1999).  A) The 
slant of a surface is defined relative to the cyclopean line of 
sight.  The variables µ and γ represent the vergence and version 
of the eyes.  S is the slant of the surfaceSee the text for 
definitions of HSR and VSR. 

of one eye. The magnification of one eye’s image disrupts the 
light field entering that eye, thereby producing skew rays similar 
to those that arose in our discussion of the geometric approach.  
As a result of how the visual system interprets the disparate 
images (including the skew rays), frontoparallel surfaces appear 
slanted relative to the viewer’s face.   Previously, Backus, et al. 
investigated how the visual system estimates surface slant in an 
effort to elucidate the perceptual basis of the induced effect [17].  
Two slant estimators were examined.  The first slant estimator 
was based on version, vergence, and the horizontal size ratio 
(HSR) of a patch on a surface.  The HSR is defined as “the ratio of 
the horizontal angles [a] patch subtends in the left and right eyes, 
respectively”  [17].   The equation for the first estimator follows: 
 

! 

S " # tan#1
1

µ
ln(HSR)# tan($ )
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& 
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) 
*    Estimate 1 

 
where µ is vergence (the angle between the eyes’ optical axes) and 
γ is version (where the eyes are directed azimuthally, see Figure 
9).  The current geometric approach to stereoscopic distortions 
predicts perceived slants that are virtually identical to those 
produced by Est. 1.  Therefore, Est. 1 supports the method 
currently used by the geometric model to assign intersection 
points to skew lines.  The second estimator used vergence, HSR, 
and the vertical size ratio (VSR), which is the vertical analog to 
the HSR for a patch on a surface.  The equation for this estimator 
was:  
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Backus et al. found that the combination of the estimates provided 
by Est. 1, Est. 2, and perspective slant cues form a robust 
estimator for surface slant [17].  They investigated the perceived 
slants of surfaces when version and VSR were placed in conflict 
and perspective cues were uninformative.  This situation arises in 
the induced effect.  Due to the conflict, Est. 1 and Est. 2 estimated 
different slants.  It was found that Est. 2 more closely predicted 
the perceived slant when the stimulus was tall, but when the 
stimulus was short, Est. 1 prevailed.  Here we should note that 
taller stimuli produce vertical disparities (and skew rays) that are 
more easily measured by the visual system.  The interpretation 
was that VSR was used to estimate slant when it was available, 
but if it was rendered uninformative, the visual system resorted to 
an estimate based on version, vergence, and HSR.  We can extend 
this analysis to the case of stereoscopic misperceptions and 
suggest that a VSR-based interpretation may be weighted more 
heavily in the presence of skew rays.  This is important, because it 
may mean that the visual system relies on a VSR-based estimate 
to produce a 3D percept where the geometric approach fails.  We 
will henceforth refer to the VSR-based interpretation as the 
“vertical disparity approach.” 
 
6. Visualization Software (Phase II) 
 
After we discovered that there were multiple ways to predict 
human perception of stereoscopic pictures, the next logical step 
was to include the alternatives in our visualization code.  

As a first step, we modified the geometric predictions to 
include Woods et al.’s solution to skew rays [7].  This ensured 
that any acquisition and viewing parameters would result in a 
predicted perceived stimulus that was in line with the current 
graphics literature.  Also, we added a warning box to the software 
to alert the user if any skew rays were present in the stimulus.  
Finally, the lines and points comprising the perceived stimulus 
were colored to reflect the level of skewness of the rays at that 

location.  This was done by increasing the red component of the 
line or point in very rough proportion to the minimum distance 
between the skew rays.  The coloring scheme can be seen in 
Figure 4. 

The other important addition to the program was the 
inclusion of predictions based on the vertical disparity approach. 
The algorithm can be explained in the context of slant perception, 
as described by Backus, et al. [17].  In the case of slant perception, 
the concept is that the viewer perceives a slant that is consistent 
with the vertical disparities incident on the retinas, regardless of 
the position of the eyes.  For instance, consider a stimulus that 
produces vertical disparities that are consistent with a surface that 
is centered 30° to the left of the head’s median plane with a slant 
of 20°.  No matter where the stimulus is displayed relative to the 
head’s median plane, the viewer will perceive the slant as 20°, 
according to the vertical disparity approach [17].    That is, the 
stimulus could be presented at 0°, 15°, or 45° to the left or right of 
the head’s median plane, and as long as it delivers the same 
vertical disparity patterns to the retinas, its perceived surface slant 
will not change.  This observation facilitated the software 
implementation of the vertical disparity approach.  To predict 
what the viewer would perceive, the same acquisition and 
presentation steps were used from the geometric approach.  Then, 
the disparate points were projected from the screen and “burned” 
onto the back of the retinas.  The two eyes were subsequently 
rotated about their vertical axes to varying degrees and the 
intersections of the rays projecting from the disparate points on 
retinal images and passing through the centers of the eyes were 
found.  This was acceptable because, again, the vertical disparity 
model is only concerned with the pattern of points on the 
retinas—not the physical orientation of the eyes.  If two rays were 
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Figure 10:  Screenshot from visualization software showcasing 
different predictions from the geometric and vertical disparity 
approaches to stereoscopic perception. The slants of the two 
predicted surfaces are noticeably different. Also note the red 
coloring near the top and bottom of the geometric prediction, 
which indicates the skew rays in this viewing situation.  

skew, the solution to their intersection was assigned to the point in 
space that, when projected onto the retinas, lay the closest to both 
the disparate points.  The root mean square (RMS) error between 
these assigned points and the original, disparate retinal points 
were used in a global minimization search to find the rotation of 
the eyes that provided intersections for all the rays. In reality, 
rounding errors could sometimes prevent a solution without any 
skew rays. As a result, our implementation searched for the 
minimum achievable RMS error and settled on those rotation 
settings for the eyes.  The set of intersections were then used to 
determine the perceived stimulus.  Since this process took a 
significant amount of time (~ 5 seconds), it was not performed in 
real time.  Rather, the user was required to press a button to 
update the vertical disparity predictions.  Then, as the program 
searched for the minimum RMS error, it continually updated a 
rendering of its current guess for the perceived stimulus.  This 
allowed the user to observe the software’s progress towards its 
final prediction, which is seen in yellow in Figure 10.  Our 
informal tests showed that this minimization search provided 
predicted slants that were very close to the estimates provided by 
Backus et al [17].   
 
7. Model Comparison 
 
Once the additional modeling capabilities were added to the 
visualization software, differences between the predictions of the 
geometric approach and the vertical disparity approach were 
explored.   

During this brief survey, we used similar conditions to those in 
Section 4.1.  However, we used a planar stimulus that was located 
approximately 60 cm from the stereocameras.  We measured the 
slant of the surface predicted by our implementation of the vertical 
disparity model and compared it to the calculations of Backus, et 
al. [17].  As stated above, the software closely matched their 
results.  Interestingly, we found that the geometric and vertical 
disparities produced identical predictions when there were no 
skew rays.  However, in conditions with skew rays, such as 
oblique viewing, the two approaches produced very different 
predictions, as seen in Figure 10. 

The ability of the software to present both predictions was 
certainly desirable, but it did not provide any indication of what a 
human observer would actually perceive.  We envision a future 
version of the software that optimally combines the two 
predictions based on empirical data derived from psychophysical 
experiments. 
 
8. Discussion / Potential Impact 
 
We have presented a novel graphical user interface designed for 
the exploration of misperceptions of stereoscopic images.   The 
software allows the user to change stimulus, image acquisition, 
and viewing parameters and witness the effect on the expected 
stereoscopic percept.   The first implementation was based purely 
on the geometric approach to stereoscopic misperceptions, which 
is found throughout the stereoscopic cinema and VR literature.  
This was useful for investigating several viewing conditions, 
including improper viewing distance, translation of the observer 
relative to the display, and incorrect projector and stereocamera 
offsets.  As shown in Figure 5, these parameters led to various 
types of distortions, such as improper perceived stimulus size and 
shape.  One can imagine viewing situations where the distortions 
are combinations of those seen in Figure 5.  This is where the 
visualization software would be especially useful.  Instead of 
relying on complex mathematical equations to characterize the 
expected misperceptions, one could enter a set of parameters into 
the program and see in real-time how a sample stimulus is 

distorted.  We expect this to be especially useful to display 
engineers who wish to minimize misperceptions.  They could 
ideally enter their concept design for a display into the program, 
and then tweak the various parameters in an effort to reduce the 
distortions perceived by various audiences.   

Scientifically speaking, the software led us to realize a critical 
shortcoming of the geometric approach to stereoscopic 
misperceptions.  Whenever an acquisition and viewing situation 
produces skew rays (discussed in detail above), the geometric 
approach fails to produce a solution.  This led us to investigate 
other ways the human visual system processes stereoscopic 
pictures.  The end result was the inclusion of an alternative model 
that utilizes the pattern of vertical disparities across a stereoscopic 
picture to form a 3D percept.  The final version of the software 
was therefore able to explore misperceptions predicted by two 
different models.  We are not aware of any other visualization 
software with this functionality. 
 
9. Future Work 
 

We have mentioned that a key strength of our software is its 
incorporation of both the geometric and vertical disparity 
approaches to stereoscopic misperceptions.  The next step will be 
to run psychophysical experiments to determine which approach 
more closely approximates the human visual system.  We will use 
the software to find viewing conditions that produce different 
predictions from the two approaches.  Those conditions will then 
be replicated in a psychophysical experiment.  An ideal 
experiment would utilize planar stimuli, with the human observer 
reporting the perceived slant in a manner similar to Backus et al. 
[17].  Once the data is collected an analyzed, we intend to 
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incorporate it into our software to produce an optimal model of 
human perception of stereoscopic displays. 

Finally, the ultimate test of the software will be its usefulness 
according to display engineers.  We would like to share our work 
with researchers and designers in the stereocinema and VR fields 
and get their feedback on its strengths and weaknesses.  This 
should help us refine the software and meet the needs of its 
potential users.  
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