
1

Spatial Layout

Maneesh Agrawala

CS 294-10: Visualization
Fall 2007

Assignment 3: Visualization Software

1. Describe data and 
storyboard interface 
due Oct 3 (before class)

2. Implement interface and 
produce final writeup
due Oct 15 (before class)

3. Submit the application and 
a final writeup on the wiki

Can work alone or in pairs
Final write up due before class on Oct 15, 2007

Create an interactive visualization application – you 
choose data domain and visualization technique.



2

Final project
Design new visualization method

Pose problem, Implement creative solution

Deliverables
Implementation of solution
8-12 page paper in format of conference paper submission
2 design discussion presentations

Schedule
Project proposal: 10/24
Initial problem presentation: 10/24, 10/29 or 10/31
Midpoint design discussion: 11/19, 11/21 or 11/26
Final paper and presentation: To be determined

Grading
Groups of up to 3 people, graded individually
Clearly report responsibilities of each member 

Spatial Layout



3

Example: Timeline label layout

Problem
Input: Set of graphic elements (scene description)
Goal: Select visual attributes for elements

Position
Orientation
Size
Color
…



4

Topics

Direct rule-based methods
Constraint satisfaction
Optimization
Example-based methods

Direct Rule-Based Methods 



5

Rule-based timeline labeling

Alternate above/below line
Center labels with respect to point on line

10 labels

Rule-based timeline labeling

Alternate above/below line
Center labels with respect to point on line

20 labels



6

Excentric labeling [Fekete & Plaisant 99]

http://www.cs.umd.edu/hcil/excentric/

Dynamic space management [Bell 00]

Manage free space on desktop to prevent 
window overlap

Video (0:46s)



7

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
Elements are axis-aligned rectangles
Keep track of largest empty space rectangles

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
Elements are axis-aligned rectangles
Keep track of largest empty space rectangles



8

Pros and cons

Pros
Designed to run extremely quickly
Simple layout algorithms are easy to code

Cons
Complex layouts require large rule bases with 
lots of special cases

Linear Constraint 
Satisfaction 



9

Network of layout constraints

[from Lok and Feiner 01]

Constraints

Network Two possible layouts

Constraints as linear equations

Local propagation
Set any variable 
Update other variables to maintain constraints

One-way
Each constraint has 1 output variable
Update output when any input changes

Multi-way
Each constraint can be written so that any variable is output
More complicated to maintain 



10

One-way constraints

One-way constraints form a directed acyclic graph (DAG).  Given the
value for any variable we propagate it’s value locally through the graph
updating the other variable.

Page layout example [Weitzman and Wittenburg 94]



11

Adaptive document layout [Jacobs 03]

Users authors templates which use one-way constraints 
to adapt to changes in page size

ADL template authoring [Jacobs 03]

Video



12

Pros and cons

Pros
Often run fast (at least one-way constraints)
Constraint solving systems are available online
Can be easier to specify relative layout 
constraints than to code direct layout algorithm 

Cons
Easy to over-constrain the problem
Constraint solving systems can only solve 
some types of layout problems
Difficult to encode desired layout in terms of 
mathematical constraints 

Optimization



13

Demo

Layout as optimization
Scene description

Geometry: polygons, bounding boxes, lines, points, etc.

Layout parameters: position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify …
Initialize/Perturb functions: Form a layout

Penalty function: Evaluate quality of layout

.. and find layout that minimizes penalty



14

Optimization algorithms

There are lots of them:
line search, Newton’s method, A*, tabu, gradient descent, 
conjugate gradient, linear programming, quadratic 
programming, simulated annealing, …

Differences
Speed

Memory 
Properties of the solution

Requirements

Simulated annealing
currL Initialize()
while(! termination condition)

newL Perturb(currL)

currE Penalty(currL)

newE Penalty(newL)
if((newE < currE) or 

(rand[0,1) < e-ΔE/T))

then currL newL

Decrease(T)

Perturb: Efficiently cover layout design space
Penalty: Describes desirable/undesirable layout features

Form initial layout

Perturb to form new layout

Evaluate quality of layouts

Always accept lower penalty

Small probability of accepting
higher penalty



15

Scene description
Geometry

Pie slices
anchors for labels

Labels
bounding boxes

Position (x, y)
Leader line
Word wrap
Color
Alignment

Orientation

Scale

Layout parameters



16



17



18

Position (x, y)
Leader line

Word wrap
Color

Alignment
Orientation

Scale

2D x 50 labels 
100D space

Many dimensions large space

Penalties
Overlap & Distance

Label – anchor slice
Label – other slices

Label – label

Leader lines
Length

Intersections

Word Wrap

Annealing 
minimizes sum of 
all penalties



19

Overlap: Label – Anchor Slice

Avoid partial overlap: No penalty if fully inside /outside

Overlap: Label – Anchor Slice

Penalize partial overlap by overlap amount



20

Distance: Label – Anchor Slice

Ensure label near center of edge of anchor slice

Distance: Label – Anchor Slice

Minimize distance d

d



21

Penalties
Overlap & Distance

Label – anchor slice
Label – other slices

Label – label

Leader lines
Length

Intersections

Word Wrap

Annealing 
minimizes sum of 
all penalties

Demo



22

Pros and cons

Pros
Much more flexible than linear constraint 
solving systems 

Cons
Can be relatively slow to converge
Need to set penalty function parameters 
(weights)
Difficult to encode desired layout in terms of 
mathematical penalty functions 

Design principles

Sometimes specified in design books
Tufte, Few, photography manuals, cartography books …
Often specified at a high level
Challenge is to transform principles into constraints or 
penalties

Cartographer Eduard Imhof’s labeling heurists transformed into penalty 
functions for an optimization based point labeling system [Edmondson 97]



23

Example-Based Methods

Preference elicitation  [Gajos and Weld 05]

Learn characteristics of good designs
Generate designs based on a parameterized design space
Ask designers if they are good or bad

Learn good parameters values based on responses



24

Nonlinear Inverse Opt.  [Vollick et al. 07]

Learn label layout style from single example

Horizontal/Vertical

Nonlinear Inverse Opt.  [Vollick et al. 07]

Learn label layout style from single example

Parallel Leader Lines



25

Artistic Resizing

A Technique for Rich
Scale-Sensitive Vector Graphics

Pierre Dragicevic

Stéphane Chatty

David Thevenin

Jean-Luc Vinot
Direction 

Générale de 
l’Aviation 

Civile

The Resizing Problem

Fixed
size

Naive
scaling

Artistic
resizing



26

Expressing Artistic Resizing

Commonly described using formulae

These formulae are:

Translated into code by the programmer
Or used as an input to constraint-solving systems

w

h

wL

hL

yL

xL
r

hB

wB

• xL = (w-wL) / 2
• yL = (h-hL) / 2
• wL = 20
• hL = 10

• wB = 5
• hB = 5

• r = 20

Example-Based Approach

1. Designers produce variants
using their authoring tool

2. System interprets
the example set



27

Artistic Resizing
How does it work?

Assumes the exclusive use of:

Copy & paste for adding new examples
Affine transformation tools (move, scale, rotate, 
shear)

Based on local interpolation of transformations

T1 T1’

Artistic Resizing
How does it work?

Each variant of T1 is associated with
the example’s bounding box

T1 T1’

?

T1’’ T1’’’



28

Artistic Resizing
How does it work?

Problem of multivariate interpolation

width

height

T1’

T1’’’

T1’’

transf.

T1

?

Pros and cons

Pros
Often much easier to specify desired layout via 
example

Cons
Usually requires underlying model
Model will constrain types of layouts possible
Large design spaces likely to require lots of 
examples to learn parameters well


