Using Space Effectively: 3D

Maneesh Agrawala

CS 294-10: Visualization Fall 2007

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- 8-12 page paper in format of conference paper submission
- 2 design discussion presentations

Schedule

- Project proposal: 10/24
- Initial problem presentation: 10/24, 10/29 or 10/31
- Midpoint design discussion: 11/19, 11/21 or 11/26
- Final paper and presentation: To be determined

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Controlling Value

Get it right in black & white

Value

- Perceived lightness/darkness
- · Controlling value primary rule for design

Value defines shape

- No edge without lightness difference
- No shading without lightness variation

Value difference (contrast)

- · Defines legibility
- Controls attention
- · Creates layering

Legibility and Contrast

Legibility

- · Function of contrast and spatial frequency
- "Psychophysics of Reading" Legge, et. al.

Legibility standards

- 5:1 contrast for legibility (ISO standard)
- 3:1 minimum legibility
- 10:1 recommended for small text

How do we specify contrast?

- Ratios of foreground to background luminance
- Different specifications for different patterns

Topics

Linear projections Non-linear projections Cartographic projections

Primary geometry

Description in 3D object-space e.g. trace rays from object through image plane into they eye

Secondary geometry

Description in 2D image-space

e.g. true shape of front face, side faces recede to vanishing point, ...

Often better corresponds to drawing approach

Parallel projections

No vanishing points or foreshortening Can represent some aspects of true shape Can shrink or stretch lengths

Projection direction

- Orthogonal to image plane or not
- Along principal axes of object or not

Orthogonal

Telephoto

As the hijack bargaining goes on under the sweltering sun...

Vertical oblique

Andre Kertesz, Tulipe Melancolique

Non orthogonal

Direction

non orthogonal to picture plane

Oblique

- Picture plane parallel to front
- True shape for front face

Axonometric

- True shape for top face
- True length for up direction
- Direction 45° of the picture plane

Oblique

Henry Lapp, 19th century

Oblique

Chinese paintings 12th century

Axonometric

Axonometric

- Like vertical oblique, but object turned 45° to picture plane
- True shape for top face
- True length for up direction

Axonometric

James Stirling, 1953

Orthographic

Direction

- Orthogonal to picture plane
- Along no principal axes

Isometric

- Direction along the average of the principal axes
- True lengths along 3 axes

Others

- Generic orthographic
- Nothing preserved, rarely used

Isometric vs. axonometric

Isometric

- No true shape
- True lengths in 3 directions
- Less distortion

Axonometric

- True shape for top face
- True length for up direction

Primary geometry

Trace rays from object, through image plane, into eye

1-point perspective

Central focus Preserves horizontals and verticals

1-point perspective

Jean Vredeman de Vries,1604

1-point perspective

Interior of St Bavo's church at Haarlem, Pieter Jansz Saenredam, 1648

Optical center is not always the center of the image

Requires view camera to adjust angle of film plane

2-point perspective

Objects stand out of the picture Preserves verticals

3-point perspective

Dramatic 3D effect

The generic case, nothing preserved

Historically, seldom used in art or technical drawing

Perspective Distortion

Perspective distortion

Wide angle projection Does not preserve subjective size

Perspective distortion

Wide angle projection Distorts shape

Perspective distortion

Portrait: distortion with wide angle and telephoto

Wide angle

Standard

Telephoto

Perspective distortion

 The sphere is projected as an ellipse

 Symmetry is not preserved

Perspective distortion

The sphere is projected as an ellipse Symmetry is not preserved

<section-header><text><text><text>

Fish-eye vs. wide angle

Perspective vs. Cylindrical/Spherical	
Perspective	Cylindrical / Spherical
Close to human perception	 Straight lines → curved
• Straight lines $ ightarrow$ straight	• Feels flat
Wide angle distorted	Whole FOV possible
= Best for narrow angles	= Best for wide angles
	Ifrom Kopf 0

Multiple center-of-projection images

<section-header><image>

Combining two perspectives

Best Views

- Large display: billboard, mural
- Oblique viewing angle
- Wide range of viewpoints

Application: wall-sized displays

Paolo Uccelo's Sir John Hawkwood

Artificial perspective

Multiple parallel (oblique) projections

- Orient receding parallel towards vanishing point
- Some area comparisons possible

53rd Street Map [Guarnaccia 93]

CG example of artificial perspective

Multiviewpoint Panoramas [Agarwala 06]

