

Relative magnitude estimation

Mackinlay's ranking of encodings

ORDINAL

QUANTITATIVE

Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape

Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope NOMINAL

Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

Conjectured effectiveness of visual encodings

Area (Size)

Volume

Shape

How many 3's

 $\begin{array}{l} 1281768756138976546984506985604982826762\\ 9809858458224509856458945098450980943585\\ 9091030209905959595772564675050678904567\\ 8845789809821677654876364908560912949686\end{array}$

[based on slide from Stasko]

How many 3's

3330209905959595772564675050678904567 **3**

[based on slide from Stasko]

More preattentive features

Line (blob) orientation	Julesz & Bergen [1983]; Wolfe et al.
Length	Triesman & Gormican [1988]
Width	Julesz [1985]
Size	Triesman & Gelade [1980]
Curvature	Triesman & Gormican [1988]
Number	Julesz [1985]; Trick & Pylyshyn [1994]
Terminators	Julesz & Bergen [1983]
Intersection	Julesz & Bergen [1983]
Closure	Enns [1986]; Triesman & Souther [1985]
Colour (hue)	Nagy & Sanchez [1990, 1992];
	D'Zmura [1991]; Kawai et al. [1995];
	Bauer et al. [1996]
Intensity	Beck et al. [1983];
	Triesman & Gormican [1988]
Flicker	Julesz [1971]
Direction of motion	Nakayama & Silverman [1986];
	Driver & McLeod [1992]
Binocular lustre	Wolfe & Franzel [1988]
Stereoscopic depth	Nakayama & Silverman [1986]
3-D depth cues	Enns [1990]
Lighting direction	Enns [1990]
http://www.csc.ncsu.edu/faculty/healey/PP/index.html	

Preattentive conjunctions

Spatial conjunctions are often preattentive

- Motion and 3D disparity
- Motion and color
- Motion and shape
- **3D** disparity and color
- 3D disparity and shape

Most conjunctions are not preattentive

Speeded classification

Redundancy gain

Facilitation in reading one dimension when the other provides redundant information

Filtering interference

Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa Stroop effect – Color naming influenced by word identity, but word naming not influenced by color

Principles

- figure/ground
- proximity
- similarity
- symmetry
- connectedness
- continuity
- closure
- common fate
- transparency

Small multiples

Operating trains. Redrawn by Tufte to emphasize colored lights. [fromTufte 90]

Change detection

<section-header>

Rensink's demonstration

http://www.usd.edu/psyc301/Rensink.htm

Summary

Choosing effective visual encodings requires knowledge of visual perception

Visual features/attributes

- Individual attributes often preattentive
- Multiple attributes may be separable, often integral

Gestalt principles provide higher level design guidelines

We don't always see everything that is there