
Graphs and Trees

Jeffrey Heer

CS 294-10: Visualization
Fall 2007

Topics

Graph and Tree Visualization
Tree Layout
Graph Layout

Goals
Overview of layout approaches and their
strengths and weaknesses
Insight into implementation techniques

Graphs and Trees

Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure

Connected graph with N-1 edges

Nodes as parents and children

Spatial Layout

The primary concern of graph drawing is
the spatial layout of nodes and edges

Often (but not always) the goal is to
effectively depict the graph structure

Connectivity, path-following
Network distance
Ordering (e.g., hierarchy level)

Applications of Tree / Graph Layout

Tournaments
Organization Charts
Genealogy
Diagramming (e.g., Visio)
Biological Interactions (Genes, Proteins)
Computer Networks
Social Networks
Simulation and Modeling
Integrated Circuit Design

Tree Visualization
Indentation

Linear list, indentation encodes depth

Node-Link diagrams
Nodes connected by lines/curves

Enclosure diagrams
Represent hierarchy by enclosure

Layering
Layering and alignment

Tree layout is fast: O(n) or O(n log n),
enabling real-time layout for interaction.

Indentation
Places all items along
vertically spaced rows

Indentation used to show
parent/child relationships

Commonly used for text

Breadth and depth
contend for space

Often requires a great
deal of scrolling

Node-Link Diagrams

Nodes are distributed in space, connected
by straight or curved lines

Typical approach is to use 2D space to
break apart breadth and depth

Often space is used to communicate
hierarchical orientation (typically
towards authority or generality)

Basic Recursive Approach

Repeatedly sub-divide space for subtrees
Breadth of tree along one dimension
Depth along the other dimension

Problem: exponential growth of breadth

Reingold & Tilford’s Tidier Layout
Goal: make smarter
use of space, maximize
density and symmetry.

Originally for binary
trees, extended by
Walker to cover
general case.

This extension was
corrected by Buchheim
et al to achieve a linear
time algorithm.

Reingold-Tilford Layout

Design concerns
Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)

Reingold-Tilford Algorithm
Linear algorithm – starts with bottom-up pass of the tree

Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down pass for assignment of final positions
Sum of initial layout and aggregated shifts

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

11

12

Reingold-Tilford Algorithm

0

Reingold-Tilford Algorithm

0

1

Reingold-Tilford Algorithm

0

1

2

Reingold-Tilford Algorithm

0

1

2

3

Reingold-Tilford Algorithm

0

1

2

4

3

Reingold-Tilford Algorithm

0

1

2

4

3

5

Reingold-Tilford Algorithm

0

1

2

4

3

5

Reingold-Tilford Algorithm

0

1

2

4

3

5

Reingold-Tilford Algorithm

0

1

2

4

3

5

Reingold-Tilford Algorithm

0

1

2

4

3

5

Reingold-Tilford Algorithm

0

1

2 6

4

3

5

Reingold-Tilford Algorithm

0

1

2 6

4

3

5

Reingold-Tilford Algorithm

0

1

2 6

4

3

5

Reingold-Tilford Algorithm

0

1

2 6

4

3

5

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8

9

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Algorithm

0

1

2

7

6

4

3

5

8 10

9

11

12

Radial Layout
Node-link diagram in
polar co-ordinates.
Radius encodes depth,
with root in the center.

Angular sectors
assigned to subtrees
(typically uses
recursive approach).

Reingold-Tilford
approach can also be
applied here.

Circular Drawing of Trees
Can be done in three
dimensions to form
“Cone Trees”

Can also make “Balloon
Trees”, sometimes
described as a 2D
version of a Cone Tree.
Not just a flattening
process, as circles must
not overlap.

Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially

Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation

Hyperbolic Layout
Perform tree layout in
hyperbolic geometry,
then project the result on
to the Euclidean plane.

Why? Like tree breadth,
the hyperbolic plane
expands exponentially!

Also computable in 3D,
projected into a sphere.

Degree-of-Interest Trees

Filter to show only the most “interesting” nodes.
Requires “degree-of-interest” (DOI) estimation.

Enforce that breadth does not exceed display.
Aggregate siblings to achieve this.

Use glyphs to encode unexpanded subtrees.

Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis
until all blocks on a level fit within bounds.

Attempt to center child blocks beneath parents.

Enclosure Diagrams

Signify structure using spatial enclosure
Venn diagrams without intersection
Popularly known as “TreeMaps”

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth

TreeMaps
Recursively fill space
based on a size metric
for nodes. Enclosure
signifies hierarchy.

Additional measures
can be taken to control
aspect ratio of cells.

Often uses rectangles,
but other shapes are
possible, e.g., iterative
Voronoi tesselation.

Layered Diagrams

Signify tree structure using
Layering
Adjacency
Alignment

Typically involves recursive sub-division
of space – we can apply the same set of
approaches as in node-link layout.

Icicle and Sunburst Trees

Higher-level nodes get a larger layer area,
whether that is horizontal or angular extent.
Child levels are layered, constrained to extent of
the parent.

Layered Tree Drawing

Hybrids are also possible…
“Elastic Hierarchies”
Node-link diagram
with treemap nodes.

Graph Visualization

Approaches to Graph Drawing

Direct Calculation using Graph Structure
Tree layout on spanning tree
Adjacency matrix layout
Hierarchical layout

Optimization-based Layout
Constraint satisfaction
Force-directed layout

Attribute-Driven Layout
Layout using data attributes, not linkage

Spanning Tree Layout

Many graphs are tree-like or have
spanning trees of interest
Websites, Social Networks

Use tree layout on spanning tree of graph
Trees created by BFS / DFS
Min/max spanning trees

Fast tree layouts allow graph layouts to be
recalculated at interactive rates

Heuristics may further improve layout

Adjacency Matrices

Node-link diagrams often don’t scale well
due to edge-crossings, occlusion

One solution: adjacency matrix
show graph as table
nodes as rows/columns
edges as table cells

Sugiyama-style graph layout

Evolution of
the UNIX
operating
system

Hierarchical
layering
based on
descent

Sugiyama-style graph layout

Assign nodes to hierarchy layers
Reverse edges to remove cycles
Create dummy nodes to “fill in” missing layers

Arrange nodes within layer
Often try to minimize edge crossings

Route edges – layout splines if needed

Layer 1

Layer 2

Layer 3

Layer 4

…

…

Hierarchical graph layout

Gnutella network

Optimization Techniques

Treat layout as an optimization problem
Define layout using a set of constraints:
equations the layout should try to obey
Use optimization algorithms to solve

Common approach for undirected graphs:
Force-Directed Layout most common

We can introduce directional constraints:
DiG-CoLa (Di-Graph Constrained Optimization Layout)

Dwyer and Koren, Best Paper at InfoVis 2005

Optimizing “Aesthetic” Constraints

Minimize edge crossings
Minimize area
Minimize line bends
Minimize line slopes
Maximize smallest angle between edges
Maximize symmetry

but, can’t do it all.

Optimizing these
criteria is often NP-
complete, requiring
approximations.

Force-Directed Layout
Edges = springs

F = -k * (x – L)
k is the spring tension coefficient (how tight the spring is)
L is the rest-length of the spring (the desired edge length)
x is the current length of the spring (i.e., distance between nodes)

Nodes = repulsive charged particles
F = G*m1*m2 / x2

G is a constant – negative for repulsion!
m1, m2 are the masses/charges of the nodes
x is the distance between nodes

Repeatedly calculate forces, update node positions
Naïve approach costly: O(N2) comparisons each iteration
Speed up to O(N log N) with Barnes-Hut algorithm (quadtree)

We can animate the optimization process
Requires numerical integration techniques to ensure that
updates for each frame are smooth and stable.

Constrained Optimization Layout
Minimize “stress” function

stress(X) = Σi<j wij (||Xi-Xj|| - dij)2

X: node positions, d: optimal edge length,
w: normalization constants
Can be subject to global or localized optimization

Local: Gradient descent (Kamada-Kawai)
Global: Majorization (Gansner, Koren, North)

Says: Try to place nodes dij apart

Add hierarchy ordering constraints
EH(y) = Σ(i,j)∈E (yi - yj - δij)2

y: node y-coordinates
δ : edge direction (e.g., 1 for i j, 0 for undirected)

Says: If i points to j, it should have a lower y-value

Typical Sugiyama layout (dot)
- preserves tree structure

DiG-CoLa method
- preserves edge lengths

slide borrowed from Tim Dwyer

Examples
slide borrowed from Tim Dwyer

Attribute-Driven Layout

Large node-link diagrams get messy!
What if the data has additional structure

we can exploit for the layout?

Idea: Use data attributes to perform layout
e.g., scatter plot based on node values

Both filtering and interaction (brushing)
can be used to explore connectivity

Attribute-Driven Layout

The “Skitter” Layout
Internet Connectivity
Radial Scatterplot

Angle = Longitude
geography

Radius = Degree
of connections
(a statistic of the nodes)

PivotGraph [Wattenberg 2006]

Tabular layout of aggregated graphs according
to node data values.

Similar to pivot tables and Tableau.

PivotGraph

PivotGraph

Operators

Roll-Up
Aggregate items with
matching data values

Selection
Filter on data values

PivotGraph Matrices

Limitations of PivotGraph

Only 2 variables (no nesting as in Tableau)
Doesn’t support continuous variables
Multivariate edges?

Summary

Tree Layout
Indented / Node-Link / Enclosure / Layers
How to address issues of scale?

Filtering and Focus + Context techniques

Graph Layout
Tree layout over spanning tree
Hierarchical “Sugiyama” Layout
Optimization Techniques
Attribute-Driven Layout

