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Topics

Graph and Tree Visualization
Tree Layout
Graph Layout

Goals
Overview of layout approaches and their 
strengths and weaknesses
Insight into implementation techniques



Graphs and Trees

Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure

Connected graph with N-1 edges

Nodes as parents and children

Spatial Layout

The primary concern of graph drawing is 
the spatial layout of nodes and edges

Often (but not always) the goal is to 
effectively depict the graph structure

Connectivity, path-following
Network distance
Ordering (e.g., hierarchy level)



Applications of Tree / Graph Layout

Tournaments
Organization Charts
Genealogy
Diagramming (e.g., Visio)
Biological Interactions (Genes, Proteins)
Computer Networks
Social Networks
Simulation and Modeling
Integrated Circuit Design

Tree Visualization
Indentation

Linear list, indentation encodes depth

Node-Link diagrams
Nodes connected by lines/curves

Enclosure diagrams
Represent hierarchy by enclosure

Layering
Layering and alignment

Tree layout is fast: O(n) or O(n log n), 
enabling real-time layout for interaction.



Indentation
Places all items along 
vertically spaced rows

Indentation used to show 
parent/child relationships

Commonly used for text

Breadth and depth 
contend for space

Often requires a great 
deal of scrolling

Node-Link Diagrams

Nodes are distributed in space, connected 
by straight or curved lines

Typical approach is to use 2D space to 
break apart breadth and depth

Often space is used to communicate 
hierarchical orientation (typically 
towards authority or generality)



Basic Recursive Approach

Repeatedly sub-divide space for subtrees
Breadth of tree along one dimension
Depth along the other dimension

Problem: exponential growth of breadth

Reingold & Tilford’s Tidier Layout
Goal: make smarter 
use of space, maximize 
density and symmetry.

Originally for binary 
trees, extended by 
Walker to cover 
general case.

This extension was 
corrected by Buchheim 
et al to achieve a linear 
time algorithm.



Reingold-Tilford Layout

Design concerns
Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)

Reingold-Tilford Algorithm
Linear algorithm – starts with bottom-up pass of the tree

Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

Shift right as close as possible to left
Computed efficiently by maintaining subtree contours

“Shifts” in position saved for each node as visited
Parent nodes are centered above their children

Top-down pass for assignment of final positions
Sum of initial layout and aggregated shifts
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Radial Layout
Node-link diagram in 
polar co-ordinates.
Radius encodes depth, 
with root in the center.

Angular sectors 
assigned to subtrees 
(typically uses 
recursive approach).

Reingold-Tilford 
approach can also be 
applied here.



Circular Drawing of Trees
Can be done in three 
dimensions to form 
“Cone Trees”

Can also make “Balloon 
Trees”, sometimes 
described as a 2D 
version of a Cone Tree. 
Not just a flattening 
process, as circles must 
not overlap.

Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially

Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation



Hyperbolic Layout
Perform tree layout in 
hyperbolic geometry, 
then project the result on 
to the Euclidean plane.

Why? Like tree breadth, 
the hyperbolic plane 
expands exponentially!

Also computable in 3D, 
projected into a sphere.

Degree-of-Interest Trees

Filter to show only the most “interesting” nodes. 
Requires “degree-of-interest” (DOI) estimation.

Enforce that breadth does not exceed display. 
Aggregate siblings to achieve this.

Use glyphs to encode unexpanded subtrees.



Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis 
until all blocks on a level fit within bounds.

Attempt to center child blocks beneath parents.

Enclosure Diagrams

Signify structure using spatial enclosure
Venn diagrams without intersection
Popularly known as “TreeMaps”

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth



TreeMaps
Recursively fill space 
based on a size metric 
for nodes. Enclosure 
signifies hierarchy.

Additional measures 
can be taken to control 
aspect ratio of cells.

Often uses rectangles, 
but other shapes are 
possible, e.g., iterative 
Voronoi tesselation.

Layered Diagrams

Signify tree structure using
Layering
Adjacency
Alignment

Typically involves recursive sub-division 
of space – we can apply the same set of 
approaches as in node-link layout.



Icicle and Sunburst Trees

Higher-level nodes get a larger layer area, 
whether that is horizontal or angular extent.
Child levels are layered, constrained to extent of 
the parent.

Layered Tree Drawing



Hybrids are also possible…
“Elastic Hierarchies”
Node-link diagram 
with treemap nodes.

Graph Visualization



Approaches to Graph Drawing

Direct Calculation using Graph Structure
Tree layout on spanning tree
Adjacency matrix layout
Hierarchical layout

Optimization-based Layout
Constraint satisfaction
Force-directed layout

Attribute-Driven Layout
Layout using data attributes, not linkage

Spanning Tree Layout

Many graphs are tree-like or have 
spanning trees of interest
Websites, Social Networks

Use tree layout on spanning tree of graph
Trees created by BFS / DFS
Min/max spanning trees

Fast tree layouts allow graph layouts to be 
recalculated at interactive rates

Heuristics may further improve layout



Adjacency Matrices

Node-link diagrams often don’t scale well 
due to edge-crossings, occlusion

One solution: adjacency matrix
show graph as table
nodes as rows/columns
edges as table cells



Sugiyama-style graph layout

Evolution of 
the UNIX 
operating 
system

Hierarchical 
layering 
based on 
descent

Sugiyama-style graph layout

Assign nodes to hierarchy layers
Reverse edges to remove cycles
Create dummy nodes to “fill in” missing layers

Arrange nodes within layer
Often try to minimize edge crossings

Route edges – layout splines if needed

Layer 1

Layer 2

Layer 3

Layer 4

…

…



Hierarchical graph layout

Gnutella network

Optimization Techniques

Treat layout as an optimization problem
Define layout using a set of constraints: 
equations the layout should try to obey
Use optimization algorithms to solve

Common approach for undirected graphs:
Force-Directed Layout most common

We can introduce directional constraints:
DiG-CoLa (Di-Graph Constrained Optimization Layout)

Dwyer and Koren, Best Paper at InfoVis 2005



Optimizing “Aesthetic” Constraints

Minimize edge crossings
Minimize area
Minimize line bends
Minimize line slopes
Maximize smallest angle between edges
Maximize symmetry

but, can’t do it all.

Optimizing these 
criteria is often NP-
complete, requiring 
approximations.

Force-Directed Layout
Edges = springs

F = -k * (x – L)
k is the spring tension coefficient (how tight the spring is)
L is the rest-length of the spring (the desired edge length)
x is the current length of the spring (i.e., distance between nodes)

Nodes = repulsive charged particles
F = G*m1*m2 / x2

G is a constant – negative for repulsion!
m1, m2 are the masses/charges of the nodes
x is the distance between nodes

Repeatedly calculate forces, update node positions
Naïve approach costly: O(N2) comparisons each iteration
Speed up to O(N log N) with Barnes-Hut algorithm (quadtree)

We can animate the optimization process
Requires numerical integration techniques to ensure that 
updates for each frame are smooth and stable.



Constrained Optimization Layout
Minimize “stress” function                                         

stress(X) = Σi<j wij ( ||Xi-Xj|| - dij )2

X: node positions, d: optimal edge length,
w: normalization constants
Can be subject to global or localized optimization

Local: Gradient descent (Kamada-Kawai)
Global: Majorization (Gansner, Koren, North)

Says: Try to place nodes dij apart

Add hierarchy ordering constraints               
EH(y) = Σ(i,j)∈E ( yi - yj - δij )2

y: node y-coordinates
δ : edge direction (e.g., 1 for i j, 0 for undirected)

Says: If i points to j, it should have a lower y-value



Typical Sugiyama layout (dot)
- preserves tree structure

DiG-CoLa method
- preserves edge lengths

slide borrowed from Tim Dwyer

Examples
slide borrowed from Tim Dwyer



Attribute-Driven Layout

Large node-link diagrams get messy!
What if the data has additional structure 

we can exploit for the layout?

Idea: Use data attributes to perform layout
e.g., scatter plot based on node values

Both filtering and interaction (brushing) 
can be used to explore connectivity

Attribute-Driven Layout

The “Skitter” Layout
Internet Connectivity
Radial Scatterplot

Angle = Longitude
geography

Radius = Degree
# of connections
(a statistic of the nodes)



PivotGraph [Wattenberg 2006]

Tabular layout of aggregated graphs according 
to node data values.

Similar to pivot tables and Tableau.

PivotGraph



PivotGraph

Operators

Roll-Up
Aggregate items with 
matching data values

Selection
Filter on data values



PivotGraph Matrices

Limitations of PivotGraph

Only 2 variables (no nesting as in Tableau)
Doesn’t support continuous variables
Multivariate edges?



Summary

Tree Layout
Indented / Node-Link / Enclosure / Layers
How to address issues of scale?

Filtering and Focus + Context techniques

Graph Layout
Tree layout over spanning tree
Hierarchical “Sugiyama” Layout
Optimization Techniques
Attribute-Driven Layout


