
Authoring Visualizations

Jeffrey Heer

CS 294-10: Visualization
Fall 2007

Today

Software Architectures for Visualization
Graphics and Interaction
Visualization frameworks
Characterizing software tools

Goals
Practical concepts for building visualizations
Appreciation of design trade-offs in tools

The Basics: Interactive Graphics

2D Graphics Model
Drawing Canvas with coordinate system

Origin typically at top-left, increasing down and to the right
Units depend on the output medium

Screen pixels, printer cm / inches

Graphics Context
Device-independent drawing abstraction
Potentially holds state for

Clipping region
Color
Typeface
Stroke model
Coordinate transforms

Rendering methods
Draw, fill shapes
Draw text strings
Draw images

(0,0)

2D Graphics Implementations
OpenGL (obviously, also includes 3D)
Postscript / PDF

Very influential, inspired the following:

Java2D, GDI+ (Win32), Quartz (MacOS X)
Platform specific 2D graphics APIs

Processing
Graphics API designed for ease-of-use
Based on the metaphor of an artist’s sketchbook
Basic interaction: raw mouse and key events

thinking
machine 4

martin
wattenberg

Travel Time Tube Map

User Interface Toolkits

Low-level graphics APIs lack structure
No built-in notion of visual objects
No routing of input events to objects
No layout support

User Interface toolkits
Spatially organized set of components
Event-driven interaction

Containment Hierarchy

Window

Panel

TextArea Panel

Button Button

Label

Event Dispatch

Window

Panel

TextArea Panel

Button Button

Label

Event Queue
• Mouse moved (t0,x,y)
• Mouse pressed (t1,x,y,1)
• Mouse dragged (t2,x,y,1)
• Key typed (t3, ‘F1’)
• …
(queues and dispatches
incoming events in a
dedicated thread)

/* callback for TextArea */
public void mouseMoved(e) {

// process mouse moved event
}

An alternative structure
Scenegraph

Commonly used in 3D toolkits, also applicable in 2D.
Models visual elements, properties and groupings in a
semantic directed acyclic graph
Groups specified relative to their own coordinate systems
Can include object groupings, multiple cameras
Well suited for panning and zooming

Scenegraph-based tools
Adobe Flash

Hierarchy of “DisplayObject” types
Transform of parent affects all children

Alpha (transparency)
Position
Rotation
Scale

Piccolo (Java and C#/.NET)
Java Toolkit for Zoomable User Interfaces
Functionality consolidated in top-level component
Extensibility achievable through compile-time
inheritance
The successor of Pad, Pad++

spacetree

datelens

Visualization Toolkits

How to support diverse visualizations?

Useful higher-level tools?
[In-Class Brainstorm]
• Data

• Data Transforms (Aggregation)
• Filters

• Visual Encoding
• Layout Algorithms

• Animation
• Interaction

• Brushing and Linking (Coordination)
• Dynamic Queries
• Selection

• Diagnostics and Meta-Data
• Automated Evaluation

Needs of an InfoVis Framework?

Most UI Toolkits provide unified structures
for Graphics and Interaction

InfoVis frameworks must also consider:
Data modeling and manipulation
Mappings from data to visuals

Higher-level constructs also possible
Layout techniques
Visual transformations
Interaction techniques (dyn. queries…)

Information Visualizer

Perhaps the first integrated framework for
visualization.

Built on early Silicon Graphics machines
($$$), using a LISP graphics language.

Provided a centralized ‘governor’ that
oversaw animation, ensuring 100ms or
better frame rates, decreasing rendering
quality as necessary.

Video: Cone Trees, Perspective Wall

InfoVis Toolkit [Fekete 2004]

Extensible collection of infovis ‘widgets’
scatterplot, treemaps, graph visualizations, etc

Table-based data model, similar to database
General interactive components

dyn queries, distortion lenses, excentric labels

http://infovis.sourceforge.net

http://prefuse.org

Structuring InfoVis Applications

Structuring InfoVis Applications

InfoVis apps often require flexibility

Small Multiples and multiple views
Different visual encodings of the same data

Overview + Detail displays
Different views of the same visualization

Flexible and varied user input sources
Interaction techniques, dynamic queries

Improvise by Chris Weaver

InfoVis Reference Model [Card et al]

Data Transformations
Mapping raw data into an organization fit for visualization

Visual Mappings
Encoding abstract data into a visual representation

View Transformations
Changing the view or perspective onto the visual representation

User interaction can feed back into any level

Raw
Data

Data
Tables

Visual
Structures

Views

Data Visual Form

Data
Transformations

Visual
Mappings

View
Transformations

Task

Reference Model Examples

Visual mappings
Layout (assigning x,y position)
Size, Shape, Color, Font, etc…

View Transformations
Navigation: Panning and Zooming
View Distortion (e.g., fisheye lens)

InfoVis Reference Model

Extension of MVC pattern
Tiered level of models

Data model and visualization model
Visualization model can have any number
of view/controllers
Controllers can feedback to the view or
either model

Apply the model: cone trees

Raw Data: File system directories
Data Transformations: Traverse file system subtree

Data Tables: Parsed/extracted directory tree
Visual Mappings: Assign 3D coordinates to tree elements
(layout), assign colors, fonts. Set lighting.

Visual Structures: 3D model of tree
View Transformations: Camera placement

View: Rendered, interactive visualization
Interaction: Selection of new focus node: changes visual

mappings by forcing new layout calculation

Source
Data

Data
Tables

Visual
Abstraction

Interactive
Views

Formatted files, SQL
databases

Table and Graph data
structures, can be
indexed and queried.
Accessed using an
expression language.

Central repository managing the
VisualItems, RendererFactory,
Actions, and Displays. Models
geometry and visual encodings.

Provides a view onto the
contents of a Visualization.
Supports transforms such as
panning and zooming.

data input / output
Readers/writers for data files.
SQL database connectivity
and query management.

processing / encoding
Actions for filtering, layout, color,
shape, and size assignment,
distortion, and animation

rendering
Renderer modules draw
VisualItems. RendererFactory
assigns renderers to items.

controls and dynamic queries
Interactive Controls for manipulating VisualItems and performing view
transformations. Dynamic queries for filtering data using components such as
sliders, radio buttons, and check boxes. Perform full text searches over data fields.

prefuse

Visualization Component Models

Monolithic vs. Polylithic Design

monolithic: primarily use compile-time
inheritance to extend functionality
Component or “widget” model for different

visualization types (Advizor, InfoVis Toolkit)

polylithic: primarily use run-time
composition to extend functionality
Fine-grained operators are composed to create

desired behaviors (prefuse, VTK)

Systems are rarely purely one or the other

c.f. Bederson et al, “Toolkit Design for Interactive Structured Graphics”, TSE 30(8),
2004

ADVIZOR

InfoVis Toolkit

The Hierarchical Approach

Visualization Widget
• Layout
• Render

New Visualization
• Layout (override)

widget hierarchies
extension by subclassing
typing is static
often can’t decompose

visualizations into
compositions of basic
techniques

monolithic toolkits
those that primarily use
compile-time inheritance to
extend functionality
[Bederson et al]

A Compositional Approach

[DEMO]

A Compositional Approach

Chain together desired components
Extend/replace techniques directly
Directly add new components (or lists of components) to customize

visualizations
Enables dynamic changes in composition
polylithic toolkits

those that primarily use run-time composition to extend
functionality [Bederson et al]

Layout Color Size Render

Visualization

+ + +

New Layout
Other Layout

Operator Pattern
Decompose visual data processing into a series

of composable operators, enabling flexible
and reconfigurable visual mappings.

Operator Pattern

Create Compound (Batch) Operators or
Operator Conditionals

Class Hierarchy of
Visualization Operators

Comparing approaches
Monolithic (widget approach)

vis = new ScatterPlot(data, xField, yField,
shapeField, sizeField);

Polylithic (operator approach)
vis = new Visualization(data);
vis.operators = [

new AxisLayout(xField, yField),
new ShapeEncoder(shapeField),
new SizeEncoder(sizeField)

];

Visualization Operators in Prefuse
Layout

AxisLayout, GridLayout, …
Graph/Tree Layout

ForceDirectedLayout
RadialTreeLayout
TreeMapLayout

Assignment
ColorAction, DataColorAction
SizeAction, DataSizeAction
ShapeAction, DataShapeAction

Animation
VisibilityAnimator
LinearAnimator, PolarAnimator
ColorAnimator, FontAnimator
SizeAnimator

Filter
VisibilityFilter
GraphDistanceFilter
FisheyeTreeFilter

Distortion
BifocalDistortion
FisheyeDistortion

Control Flow
ActionList (sequential grouping)
ActionSwitch (conditional eval.)
RepaintAction

Actions can be run once or
repeatedly over a time interval,
controlled by an ActivityManger

Trade-Offs
Monolithic model cited as easier for programmers

Fits existing programming models well
Less code for common cases
Works well when not much extensibility is needed

Polylithic model provides more flexibility and
dynamic behavior
Easier to add, extend, and modify application behavior
Supports creation of end-user (non-programmer) tools

Animation

Operator pattern provides mechanism for
fine-grained composition of techniques

However, what about time-based
processing?
Animation (e.g., interpolation, iterated layout)
Hysteresis (e.g., delayed reaction to input)

Two Approaches
Frame-based (redraw scene for each frame)
Time-based (update items over a duration)

Scheduler Pattern
Provide schedulable activities for implementing

time-sensitive, potentially recurring
operations.

Implement Operators within the Scheduler
pattern: each Operator is also an Activity

Enables animated and
timing-sensitive
visualization operators.

Operator + Scheduler

Animation in prefuse
Animation API: public void run(double frac)

Single method allows easy extensibility
All Actions can be scheduled to run repeatedly over a

time interval, enabling animation.
frac is a value between 0 and 1 indicating the progress

through the time interval.

A pacing (or easing) function p(x) can be used to modify
the rate of change of the frac parameter.

elapsed time / duration

frac

0

1

0 1
elapsed time / duration

frac

0
0 1

1

p(x) = x
(linear animation)

p(x) = sigmoid(x)
(slow-in slow-out)

Dynamic Queries

Dynamic Query Bindings
Range Queries

Filter a range of values
Ordinal and quantitative data
Widgets: range slider, slider

List Queries
Filter individual data values
Any data type, though small lists are better
Widgets: combo box, list box, radio buttons, checkboxes

Search Queries
Filter items in response to a text search
Search engine types: prefix matching, regular expressions,
full keyword search (inverted index)
Textual data
Widgets: text box

Dynamic Query Bindings

id species organ width length

1 I. Setosa Petal 2 14

2 I. Verginica Petal 24 56

3 I. Versicolor Petal 13 45

4 I. Setosa Sepal 33 50

5 I. Verginica Sepal 31 67

6 I. Versicolor Sepal 28 57

7 I. Setosa Petal 2 10

List Query BindingData Table Column

Predicate ListModel

Dynamic Query widgets are
generated by the binding.
Interaction changes the model,
which notifies the binding,
updating the predicate.

A Predicate is a boolean
function over the tuples of a
table. It can be used as input to
various operators, including
filtering operations.

(Organ = ‘Petal’)

Summary

Why Tools Matter
Transform the cost structure of development
Allow developers to work faster or do more
than they could do otherwise

Allow reuse of complex techniques
Shared structures can facilitate collaboration and
communication, even across groups
Provides problem-solving framework – can reify
and standardize successful approaches

Influence the design, conventions, and variety
of interfaces and visualizations we encounter

The oft-debated affects of PowerPoint or Excel
charts on business and academia
The entrenchment of the WIMP UI paradigm

Purpose of Toolkits

The threshold: how difficult it is to learn
and use the tools

The ceiling: how much can be
accomplished using a given system

The goal of toolkit design is to lower the
threshold and raise the ceiling

Evaluation

The basic question: how to gauge the
threshold and ceiling of a toolkit?

Threshold: usability evaluation
An API is a user interface where
programmers are the users.

Ceiling: design space analysis
Identify design dimensions, assess the
coverage of these dimensions, often by
building demonstrative applications.

Summary

Visualization implementation spans
multiple levels of abstraction

InfoVis Reference Model
• Decouple data, visual model, and display

Operators, not widgets, provide more
flexibility for design and implementation
• Filters, Layout, Encoding, Distortion…

Take note of both the threshold and
ceiling of available tools

