Announcements

Final Project: multiple due dates
- Project proposal due Wed Nov 17, 11pm
- Progress report 1 due Mon Nov 22, 11pm
- Progress report 2 due Wed Dec 1, 11pm
- Final report due Wed Dec 8, 11pm
Announcements

Assignment 4 (ray tracer) graded

- glookup -s as4
- glookup -s as4ec

Today

Video Synthesis
Texture Synthesis
Weather Forecasting for

Let’s predict weather:
- Given today’s weather only, we want to know tomorrow’s
- Suppose weather can only be {Sunny, Cloudy, Raining}

The “Weather Channel” algorithm:
- Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
- Compute percentages for each state:
 - P(R|S), P(S|S), etc.
- Predict the state with highest probability!
- It’s a Markov Chain

Markov Chain

What if we know today and yesterday’s weather?

Text Synthesis

[Shannon, ‘48] proposed a way to generate English-looking text using N-grams:
- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE
Results (using alt.singles corpus):

- “As I’ve commented before, really relating to someone involves standing next to impossible.”
- “One morning I shot an elephant in my arms and kissed him.”
- “I spent an interesting evening recently with a grain of salt.”

Video Textures

Arno Schödl
Richard Szeliski
David Salesin
Irfan Essa

Still photos
Our approach

How do we find good transitions?

Finding good transitions

Compute L_2 distance $D_{i,j}$ between all frames

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions
Transition costs

Transition from i to j if successor of i is similar to j

Cost function: \(C_{i \rightarrow j} = D_{i+1,j} \)

Transition probabilities

Probability for transition \(P_{i \rightarrow j} \) inversely related to cost:

\(P_{i \rightarrow j} \sim \exp \left(- \frac{C_{i \rightarrow j}}{\sigma^2} \right) \)

Preserving dynamics
Preserving dynamics

Cost for transition $i \rightarrow j$

\[\sum_{k=-N}^{N-1} C_{i\rightarrow j} = w_k D_{i+k+1,j+k} \]
Dead ends
No good transition at the end of sequence

Future cost
- Propagate future transition costs backward
- Iteratively compute new cost $F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_k F_{j \rightarrow k}$
Future cost
- Propagate future transition costs backward
- Iteratively compute new cost $F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_k F_{j \rightarrow k}$

Q-Learning
Future cost – effect

Useful for web pages

Video portrait

Region-based analysis

- Divide video up into regions
- Generate a video texture for each region
Automatic region analysis

User selects target frame range

User-controlled video textures

User selects target frame range

Video-based animation

- Like sprites computer games
- Extract sprites from real video
- Interactively control desired motion
Video sprite extraction

- blue screen matting and velocity estimation

Video sprite control

- Augmented transition cost:

\[C^{\text{Animation}}_{i \rightarrow j} = \alpha C_{i \rightarrow j} + \beta \text{angle similarity term} \]

- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
- [Git-GVU-00-11]
Interactive fish

Summary
- Video clips → video textures
 - define Markov process
 - preserve dynamics
 - avoid dead-ends
 - disguise visual discontinuities

Discussion
- Some things are relatively easy
Discussion

• Some are hard

“Amateur” by Lasse Gjertsen

http://www.youtube.com/watch?v=JzqumbhfxRo

Michel Gondry Train Video

http://vimeo.com/1255501
Texture

Texture depicts spatially repeating patterns
Many natural phenomena are textures

radishes rocks yogurt

Texture Synthesis

Goal of Texture Synthesis: create new samples of a given texture

Many applications: virtual environments, hole-filling, texturing surfaces

The Challenge

Need to model the whole spectrum: from repeated to stochastic texture

repeated stochastic Both?
Heeger Bergen 1995

Seminal paper that introduced texture synthesis problem

Algorithm:
- Initialize J to noise
- Create multiresolution pyramids for I and J
- Match the histograms of J’s pyramid levels with I’s pyramid levels
- Loop until convergence
- Can be generalized to 3D

Heeger Bergen 1995 Algorithm

Image pyramids
- Gaussian
- Laplacian

Steerable pyramids [SimoncelliFreeman95]
- b): multiple scales of oriented filters
- c): a sample image
- d): results of filters in b) applied to c)

Heeger Bergen 1995 - Results

Successes

Failures
Heeger Bergen 1995 - Results

- Histograms of responses to various filters

Avoiding copying:
- Inherent in algorithm

No user intervention required
Captures stochastic textures well
Does not capture structure
- Lack of inter-scale constraints

Heeger Bergen 1995 - Verdict

De Bonet 1997

Propagate constraints down by matching statistics all the way up pyramid

Feature vector: multiscale collection of filter responses for a given pixel

Algorithm:
- Initialize \(J \) to empty image
- Create multiresolution pyramids for \(I \) and \(J \)
- For each pixel in level of \(J \), randomly choose pixel from corresponding level of \(I \) that has similar feature vector
De Bonet 1997 Algorithm

- Feature vector containing multiscale responses to various filters

Avoiding copying:
- Random choice of pixels with 'close' feature vectors, but copying still frequent on small scale

Individual per-filter thresholds are cumbersome
Feature vectors used in later synthesis work
Efros & Leung 1999 - Algorithm

Assuming Markov property, compute \(P(p|N(p)) \)

Building explicit probability tables infeasible

Instead, we search the input image for all similar neighborhoods — that’s our pdf for \(p \)
To sample from this pdf, just pick one match at random

Some Details

Growing is in “onion skin” order

• Within each “layer”, pixels with most neighbors are synthesized first
• If no close match can be found, the pixel is not synthesized until the end

Using Gaussian-weighted SSD is very important

• to make sure the new pixel agrees with its closest neighbors
• Approximates reduction to a smaller neighborhood window if data is too sparse

Neighborhood Window
Varying Window Size

Increasing window size

Synthesis Results

french canvas rafia weave

More Results

white bread brick wall
Homage to Shannon

Hole Filling

Extrapolation
Texture model:
- MRF
Avoiding copying:
- MRF
Neighborhood size = largest feature size
Markov model is surprisingly good
"I spent an interesting evening recently with a grain of salt."
Search is very slow with large neighborhoods

Image Quilting [Efros & Freeman]

Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
- Exactly the same but now we want $P(B|N(B))$
- Much faster: synthesize all pixels in a block at once
- Not the same as multi-scale!

Input image

Synthesizing a block

Input texture

Random placement of blocks
Neighboring blocks constrained by overlap
Minimal error boundary cut
Philosophy

The “Corrupt Professor’s Algorithm”:
• Plagiarize as much of the source image as you can
• Then try to cover up the evidence

Rationale:
• Texture blocks are by definition correct samples of texture so problem only connecting them together
Failures
(Chernobyl Harvest)
Efros Freeman 2001 - Verdict

Texture model:
- MRF

Avoiding copying:
- Randomized patch selection, but still noticeable

Patch size is a hard parameter to understand
Results are surprisingly good given algorithm
Multiscale goes on a brief hiatus

Kwatra et. al. 2003

Generalizes seam computation in overlap regions as a graph cut problem
- Based on [Boykov et. al. 99] (with Ramin Zabih)

Algorithm:
- Initialize J to empty
- Copy pieces of I to J using a variety of methods
- Formulate graph in overlap region based on error (differences) and compute minimum cut
- Copy sink-side pixels to J
- Variety of strategies to further hide seams

Kwatra et. al. 2003 - Algorithm

(assume cut region is 3x3 for simplicity)
Kwatra et. al. 2003 - Results

Texture model:
 - MRF

Avoiding copying:
 - Even with a multitude of patch selection methods, still noticeable when it happens repeatedly

Paper presents a bag of synthesis tricks without much intuition for when to use what

Graph cut formalization is useful and powerful

Kwatra et. al. 2003 - Verdict

Fill Order

In what order should we fill the pixels?
Fill Order

In what order should we fill the pixels?
• choose pixels that have more neighbors filled
• choose pixels that are continuations of lines/curves/edges

Application: Texture Transfer

Try to explain one object with bits and pieces of another object:

Texture Transfer

Constraint

Texture sample
Texture Transfer

- Take the texture from one image and "paint" it onto another object.

Same as texture synthesis, except an additional constraint:
1. Consistency of texture
2. Similarity to the image being "explained"
Image Analogies

A, A', B, B'
Colorization

Unfiltered source (A) Filtered source (A')
Unfiltered target (B) Filtered target (B')

Texture-by-numbers

A A'
B B'

Image Analogies

Aaron Hertzmann
Charles Jacobs
Nuria Oliver
Brian Curless
David Salesin
Super-resolution
A
A'

Super-resolution (result!)
B
B'