Style-Based Inverse Kinematics

Keith Grochow Steven L. Martin
Aaron Hertzmann Zoran Popovic

CS-184: Computer Graphics

| ecture 20: Forward and Inverse Kinematics

Maneesh Agrawala
University of California, Berkeley

Announcements

Final Project: multiple due dates

* Project proposal due Wed Nov |7, | Ipm
+ Progress report | due Mon Nov 22, | Ipm
* Progress report 2 due Wed Dec |, | Ipm
* Final report due Wed Dec 8, | Ipm

Today

Forward kinematics
Inverse kinematics
* Pin joints
+ Ball joints
+ Prismatic joints

Forward Kinematics

Articulated skeleton

+ Topology (what's connected to what)
+ Geometric relations from joints

* Independent of display geometry

* Tree structure

* Loop joints break “tree-ness”

Forward Kinematics

Root body

+ Position set by “global’ggansformation

* Root joint
+ Position
* Rotation
+ Other bodies relative to root
* Inboard toward the root

* Outboard away from root

Forward Kinematics

A joint
* Joint's inboard body \

* Joint's outboard body

Forward Kinematics

A body
\

+ Body's inboard joint

+ Body's outboard joint

+ May have several outboard joints

Forward Kinematics

A body
+ Body's inboard joint

* Body's outboard joint
+ May have several outboard joints
+ Body's parent
+ Body’s child
+ May have several children

Forward Kinematics

Interior joints

* Typically not 6 DOF joints
* Pin - rotate about one axis
+ Ball - arbitrary rotation

* Prism - translation along one axis

Forward Kinematics

Pin Joints

* Translate inboard joint to local origin
+ Apply rotation about axis

+ Translate origin to location of joint on outboard body

X
Bt

Forward Kinematics

Ball Joints

+ Translate inboard joint to local origin
+ Apply rotation about arbitrary axis

+ Translate origin to location of joint on outboard body

Forward Kinematics

Prismatic Joints

* Translate inboard joint to local origin
* Translate along axis
+ Translate origin to location of joint on outboard body

L
I

Forward Kinematics

Composite transformations up the hierarchy

AN
y =

Forward Kinematics

Composite transformations up the hierarchy

A =R
Y

Forward Kinematics

Composite transformations up the hierarchy

A

Forward Kinematics

Composite transformations up the hierarchy

Forward Kinematics

Composite transformations up the hierarchy

Inverse Kinematics

Given

* Root transformation
+ Initial configuration

* Desired end point location
Find

* Interior parameter settings

Inverse Kinematics

Egon Pasztor

Inverse Kinematics

A simple two segment arm in 2D

pz = licos(01) + locos(01 + 0)
pr = lysin(6y) + losin(6q + 65)

Warning: Z-up Coordinate System

Inverse Kinematics

Direct IK: solve for the parameters

Oy = cos

Rl
2111y

_ —Pzlasin(6) + pu(lh + I cos(62))

pelosin(@s) + p2(l; + 1y cos(6))

Inverse Kinematics

Why is the problem hard?

* Multiple solutions separated in configuration space

Inverse Kinematics

Why is the problem hard?

+ Multiple solutions connected in configuration space

Inverse Kinematics

Why is the problem hard?

* Solutions may not always exist

Inverse Kinematics

Numerical Solution

+ Start in some initial configuration

+ Define an error metric (e.g. goal pos - current pos)
+ Compute Jacobian of error wi.rt. inputs

+ Apply Newton's method (or other procedure)

* lterate...

Inverse Kinematics

Recall simple two segment arm:

Dz (01, 92) =1 COS(01) + I COS(01 aF 02)
Pz (91, 92) = ll sin(91) + lg sin(01 + 92)

Warning: Z-up Coordinate System

Inverse Kinematics

We can write of the derivatives

—l1sin(6) — losin(0] + 65)

l1cos(01) + lgcos(6y + 62)

— lpsin(fy + 6)

+ Iy cos(6y + 62)

01(9*) = 010*
02(9*) = 020*

o, doy
o, ~C an,
dp.(61(60.),02(0.)) _ dp. dby _ dp. b
0, do, d0, " dos do,
dp. _ dp: | dp:
a0, a6, " 48,

Direction in Config. Space

Inverse Kinematics

The Jacobian (of p w.r.t. 6)

Inverse Kinematics

“Inverse Kinematics

“Inverse Kinematics

Inverse Kinematics

Jacobian is not always invertible

+ Use pseudo inverse (SVD)

op: 0
o oy
0

= J(0)
o 3t

Computing a linear approximation J=

+ End effector only locally moves linearly
+ So iterate (choosing proper step size) and update Jacobian after each step
+ Choosing step size requires line search at each step

+ Choose some step size (say 5 degrees) and compute how to update joint parameters

+ Calculate distance of end effector from goal

* If distance decreased take step

* Is distance did not decrease set parameters to be half the current change and try again

Inverse Kinematics

More complex systems

+ More complex joints (prism and ball)
* More links

+ Hard constraints (joint limits)

* Multiple criteria and multiple chains

Inverse Kinematics

Some issues

+ How to pick from muttiple solutions?
* Robustness when no solutions

+ Contradictory solutions

+ Smooth interpolation

* Interpolation aware of constraints

Inverse Kinematics

Prism Joints
P
ly
%f_J
P =l d
pr =d

Inverse Kinematics

Ball Joints

Inverse Kinematics

Ball Joints (moving axis)

dp = [dr]-em-a: = [dr]-p = :[lzzl-dr

That is the Jacobian |ot$

0 —r3 m
[Fl=|7r3 0 —-m
-ro ry 0 |

rl-z=rxa

FI nverse Kinematics

FI nverse Kinematics
Many links / joints

+ Need a generic method for building Jacobian

Mnverse Kinematics

Can't just concatenate individual matrices

Inverse Kinematics

Transformation from body to world
{

X0<—2' = 'Hl X(

=)
Rotation from body to world

7
Roi = 1) Bj1)ej = Rocr-Brg -

= XO(_l.Xl(_Q Y

Inverse Kinematics

Need to transform Jacobians to common
coordinate system (WORLD)

W

2b

Ji WORLD = Ro—(i—1) Ji

Inverse Kinematics

| Ry—a1, J3(03,p3)
P Ro—2a: Jon, (01, Xon—3 - P3)
Ry—1- ']2&(92&7 Xoa3 p3)
Ji(61, X13 - p3)
ds S b ramapoang 220ve
d— |9
do, dp=J-dd
i

Suggested Reading

Numerical Methods for Inverse Kinematics by Niels Joubert (see wiki)

Advanced Animation and Rendering Techniques by Watt and Watt
+ Chapters 15 and 16

