CS-184: Computer Graphics

Lecture 17: Radiometry

Maneesh Agrawala University of California, Berkeley

Today

Radiometry: measuring light

- Local Illumination and Raytracing were discussed in an *ad hoc* fashion
- Proper discussion requires proper units
- Not just pretty pictures... but correct pictures

Matching Reality

Unknown

Matching Reality

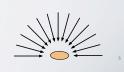
Units

Light energy

- Really power not energy is what we measure
- Joules / second (J/s) = Watts (W)

Spectral energy density

- Power per unit spectrum interval
- Watts / nano-meter (W/nm)
- Properly done as function over spectrum
- Often just sampled for RGB


Often we assume people know we're talking about S.E.D. and just say E...

Irradiance

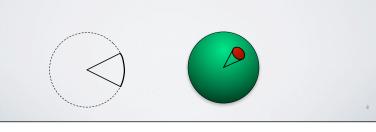
Total light striking surface from all directions

- Only meaningful w.r.t. a surface
- Power per square meter (W/m^2)
- Really S.E.D. per square meter $(\,W/m^2\,/nm\,)$
- Not all directions sum the same because of foreshortening

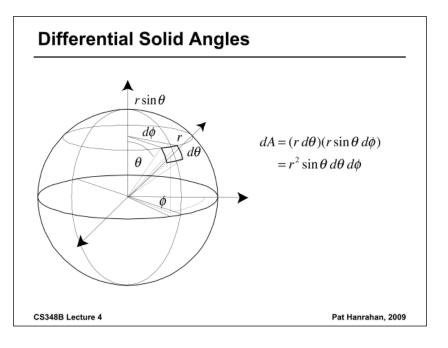
Radiant Exitance

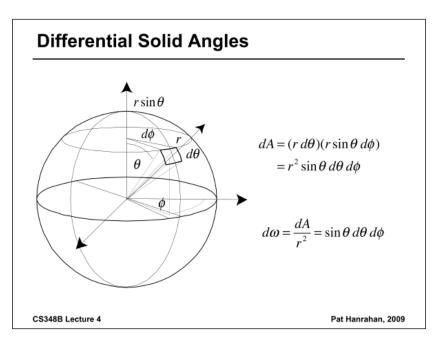
Total light *leaving* surface over all directions

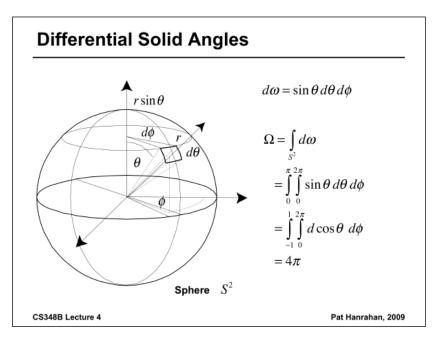
- Only meaningful w.r.t. a surface
- Power per square meter (W/m^2)
- Really S.E.D. per square meter $(W/m^2\,/nm)$
- Also called Radiosity
- Sum over all directions \Rightarrow same in all directions


Solid Angles

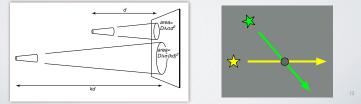
Regular angles measured in *radians* $[0..2\pi]$


• Measured by arc-length on unit circle


Solid angles measured in steradians $[0..4\pi]$

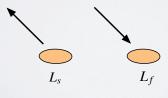

- Measured by area on unit sphere
- Not necessarily little round pieces...

Angles and Solid Angles Angle $\theta = \frac{l}{r}$ \Rightarrow circle has 2π radians Solid angle $\Omega = \frac{A}{R^2}$ \Rightarrow sphere has 4π steradians



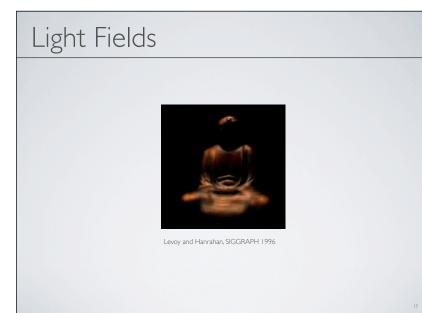
Radiance

Light energy passing though a point in space within a given solid angle


- Energy per steradian per square meter $(W/m^2/sr)$
- + S.E.D. per steradian per square meter ($W/m^2/sr/nm$)
- Constant along straight lines in free space
 - Area of surface being sampled is proportional to distance and light inversely proportional to squared distance

Radiance

Near surfaces, differentiate between

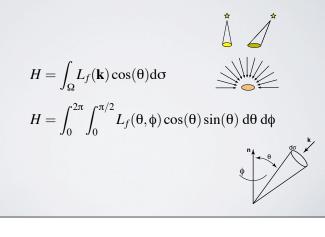

- Radiance from the surface (surface radiance)
- Radiance from other things (field radiance)

Light Fields

Radiance at every point in space, direction, and frequency: 6D function Collapse frequency to RGB, and assume free space: 4D function Sample and record it over some volume

<section-header><text><image>

Light Fields



Michelangelo's **Statue of Night** From the Digital Michelangelo Project

Computing Irradiance

Integrate incoming radiance (field radiance) over all direction

Take into account foreshortening

Revisiting The BRDF

How much light from direction k_i goes out in direction k_o

Now we can talk about units:

 BRDF is ratio of surface radiance to the foreshortened field radiance multiplied by small solid angle (denom. similar to integrand of irradiance - see prev. slide)

$$\rho(\mathbf{k}_i, \mathbf{k}_o) = \frac{L_s(\mathbf{k}_o)}{L_f(\mathbf{k}_i)\cos(\theta_i)\Delta\sigma_i}$$

We left out frequency dependance here...

Also note for perfect Lambertian reflector with constant BRDF $\rho=1/\pi$

The Rendering Equation

Total light going out in some direction is given by an integral over all incoming directions:

$$L_s(\mathbf{k}_o) = \int_{\Omega} \rho(\mathbf{k}_i, \mathbf{k}_o) L_f(\mathbf{k}_i) \cos(\theta_i) \mathrm{d}\sigma_i$$

• Note, this is recursive (my L_f is another's L_s)

The Rendering Equation $L_{s}(\mathbf{k}_{o}) = \int_{\Omega} \rho(\mathbf{k}_{i}, \mathbf{k}_{o}) L_{f}(\mathbf{k}_{i}) \cos(\theta_{i}) d\sigma_{i}$ Rewrite explicitly in terms of surface radiances only $L_{f}(\mathbf{k}_{i}) = L_{s}(-\mathbf{k}_{i}) \quad \Delta \sigma_{i} = \frac{\Delta A' \cos(\theta')}{||\mathbf{x} - \mathbf{x}'||^{2}}$ $L_{s}(\mathbf{x}, \mathbf{k}_{o}) = \int_{x' \text{ visible to } x} \frac{\rho(\mathbf{k}_{i}, \mathbf{k}_{o}) L_{s}(\mathbf{x}', \mathbf{x} - \mathbf{x}') \cos(\theta_{i}) \cos(\theta')}{||\mathbf{x} - \mathbf{x}'||^{2}} d\mathbf{A}'$

$$\begin{split} L_s(\mathbf{x}, \mathbf{k}_o) &= \int_{\text{all } x'} \frac{\rho(\mathbf{k}_i, \mathbf{k}_o) L_s(\mathbf{x}', \mathbf{x} - \mathbf{x}') \delta(\mathbf{x}, \mathbf{x}') \cos(\theta_i) \cos(\theta')}{||\mathbf{x} - \mathbf{x}'||^2} \mathrm{d}\mathbf{A}' \\ \delta(\mathbf{x}, \mathbf{x}') &= \begin{cases} 1 \text{ if } \mathbf{x} \text{ and } \mathbf{x}' \text{ are mutually visible} \\ 0 \text{ otherwise} \end{cases} \end{split}$$

Light Paths

Many paths from light to eye

Characterize by the types of bounces

- Begin at light
- End at eye
- "Specular" bounces
- "Diffuse" bounces

Light Paths

Describe paths using strings

• LDE, LDSE, LSE, etc.

Describe types of paths with regular expressions

- L{D|S}S*E ← Standard raytracing
- L{D|S}E Local illumination