
CS-184: Computer Graphics

Lecture 16:  Texture and Other Maps
Maneesh Agrawala

University of California, Berkeley

Slides based on those of James O’Brien, Steve Marschner and Greg Humphreys

Announcements

Assignment 5: due Fri Nov 5 by 11pm
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Today

Assigning Texture Coordinates
Distortion
Antialiasing
Bump & Displacement Maps, Environment Maps, Shadow Maps
Procedural Textures

Texture Mapping
Objects have properties that vary across the surface
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Texture Mapping

So we make the shading
parameters vary across
the surface
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Texture Mapping
Adds visual complexity; makes appealing images
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Surface Detail

Representing all detail in image with polygons would be cumbersome
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Specific details

Structured noise

Pattern w/ randomness

Section through volume

Bumps

Texture mapping: a technique of defining surface 
properties (especially shading parameters) in such a way 
that they vary as a function of position on the surface.

Definition
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Examples
Wood gym floor with smooth finish

• diffuse color kD varies with position

• specular properties kS, n are constant

Glazed pot with finger prints

• diffuse and specular colors kD, kS are constant

• specular exponent n varies with position

Adding dirt to painted surfaces

Simulating stone, fabric, …
• to approximate effects of small-scale geometry
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More than Diffuse Color
Use a 2D image and map it to the surface of an object
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ColorSpecular

Bump

Mapping textures to surfaces

Usually the texture is an image (function of u, v)
• Big question: where on the surface does the image go?
• Obvious only for a flat rectangle the same shape as the image
• Otherwise more interesting

Note that 3D textures also exist
• Texture is a function of (u, v, w)
• Can just evaluate texture at 3D 

surface point
• Good for solid materials
• Often defined procedurally
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Assigning Texture Coordinates

Parameterization

geometry

+ =

texture textured 
geometry

Q: How do we decide where on the geometry
 each color from the image should go?

Mapping Textures to Surfaces
“Putting the image on the surface”
• Need a function f that tells where each point on the image goes
• Similar to parametric surface function
• For parametric surfaces you get f for free
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Texture Coordinate Functions
Non-parametrically defined surfaces: more to do
• Can’t assign texture coordinates as we generate the surface
• Need inverse of the function f

Texture coordinate fn.

• For a vertex at p
get texture at φ(p)

16

Texture Coordinate Functions
Define texture image as a function

• Where C is the set of colors for the diffuse component

Diffuse color (for example) at point p is then
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Texture Coordinate Functions
Mapping from S to D can be many-to-one
• Every surface point gets only one color assigned
• OK (and in fact useful) for multiple surface points to be mapped to the 

same texture point
• e.g. repeating tiles
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Repeating Textures
Image Tiles allow repeating textures
• Images must be manipulated to allow tilling
• Often result in visible artifacts
• There are methods to get around artifacts....
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Repeating Textures
Image Tiles allow repeating textures
• Images must be manipulated to allow tilling
• Often result in visible artifacts
• Artifacts not an issue for some artificial textures
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Examples

[Paul Bourke]



Planar mapping
Like projections, drop z coord (u,v) = (x,y)

Problems: what happens near z = 0?
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Cylindrical Mapping
Cylinder: r, θ, z with (u,v) = (θ/(2π),z)

• Note seams when wrapping around (θ = 0 or 2π)
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Spherical Mapping

Convert to spherical coordinates: use latitude/long.
• Singularities at north and south poles
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Sphere Mapping
For a sphere: latitude-longitude coordinates

•  φ maps point to its latitude and longitude
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Examples of Coordinate Functions
Non-parametric surfaces: project to parametric surface

[M
ol

le
r 

&
 H

ai
ne

s 
20

02
]

26

Examples: Parametric Surface
A parametric surface (e.g. spline patch)
• Surface parameterization gives mapping function directly

(well, the inverse of the parameterization)
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Unfold Surface via Optimization

[Piponi2000]

Split Surface into Patches via Opt.

[Sander2001]

charts atlas surface

Texture Coordinates on Meshes

Texture coordinates become per-vertex data 
• Can think of them as 2nd position
• Each vertex has a position in 3D space and in 2D texture space

How to come up with vertex (u,v)s?
• Use any or all of the methods just discussed
• In practice this is how you implement those for curved surfaces 

approximated with triangles
• Alternatively: Use some kind of optimization
• Try to choose vertex (u,v)s to result in a smooth, low distortion map
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Examples: Triangle
Triangles
• specify (u,v) for each vertex
• define (u,v) for interior by barycentric (linear) interpolation
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   p
(u,v)

c
(uc,vc)

b
(ub,vb)

a
(ua,va)

p(β, γ) = a+ β(b− a) + γ(c− a)

u(β, γ) = ua + β(ub − ua) + γ(uc − ua)
v(β, γ) = va + β(vb − va) + γ(vc − va)

Dealing with Distortion

Can’t Linearly Interpolate Tex. Coords.
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   p
(u,v)

c
(uc,vc)

b
(ub,vb)

a
(ua,va)

p(β, γ) = a+ β(b− a) + γ(c− a)

u(β, γ) = ua + β(ub − ua) + γ(uc − ua)
v(β, γ) = va + β(vb − va) + γ(vc − va)

Triangle Scan Conversion

For each pixel:
   1. Interpolate u & v down edges, across spans

   2. Look up nearest texel in texture map

   3. Color pixel according to texel color 
      (possibly modulated by lighting calculations)

Leads to Artifacts: http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture21/Slide05.html



Naïve Texturing Artifacts

Warping at edges of triangles

A more obvious example:
 http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture21/Slide06.html

Consider the geometry of interpolating parameters more 
carefully

Interpolating Parameters
Problem due to interpolating parameters in screen-space

Uniform steps in screen space ≠ uniform steps in world space

Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42



Interpolating Parameters

Perspective foreshortening not being applied to interpolated parameters
• Parameters should be compressed with distance

• Linearly interpolating them in screen-space doesn’t do this 

Is this a problem with Gouraud shading?

• A: It can be, but we usually don’t notice (why?)
http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture21/Slide17.html

Perspective-Correct Interpolation

Skipping a bit of math to make a long story short…
• Rather than interpolating u and v directly, interpolate u/z and v/z 

These do interpolate correctly in screen space

Also need to interpolate z and divide per-pixel

Problem: may not know z (didn’t need it for rasterizing)

• Solution: we do know w ∝ z/n
• So…interpolate w, u/w and v/w (interpolation of w is non-lin. - see book)

Unfortunately involves a divide per pixel 
• http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture21/Slide14.html
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Depth Distortion
Recall depth distortion from perspective
• Interpolating in screen space different than in world
• Ok, for shading (mostly)
• Bad for texture

ScreenWorld

Half way in screen space

Half way in world space



Depth Distortion
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P1

P2 P3

P4

S1 = P1/h1

S2 = P2/h2

S3 = P3/h3

S4 = P4/h4

Depth Distortion
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Depth Distortion
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Formula for     should be independent 
of given vertex locations

bi/hi = ai/
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Depth Distortion
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Linear equations in the     .

bi/hi = ai/
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Depth Distortion
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Not invertible so add some
extra constraints.

Linear equations in the     .

Depth Distortion
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For a line:

For a triangle:

Obvious Permutations for other coefficients.

ai = h2bi/(b1h2 + h1b2)

ai = h2h3bi/(h2h3b1 + h1h3b2 + h1h2b3)



Antialiasing

Texture Filtering

Angel Figure 9.4

Must sample texture to determine color at each pixel in image

Texture Filtering

Angel Figure 9.14

Size of filter depends on projective warp
• Can prefilter images 

     Mip maps
     Summed area tables

Magnification Minification



Mip Maps
Keep textures prefiltered at multiple resolutions
• For each pixel, linearly interpolate between 

two closest levels (e.g., trilinear filtering) 
• Fast, easy for hardware

MIP-map Example

No filtering:

MIP-map texturing:

AAAAAAAGH
MY EYES ARE BURNING

Where are my glasses?

Summed-area tables
At each texel keep sum of all values down & right
• To compute sum of all values within a rectangle,

simply subtract two entries
• Better ability to capture very oblique projections
• But, cannot store values in a single byte

S1

S2



Summed-Area Tables
Mipmaps assume each pixel projects to a square in texture (is a lie)

SAT can integrate texels covered by the pixel more exactly (still quickly)

MIP-map texturing Summed-area table texturing

Uses of Textures

Texture Mapping Variations
Can modulate any parameter in the Phong shading equation

Texture as
R,G,B:

Texture as
diffuse lighting
coefficients:



Non-Color Textures
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ColorSpecular

Bump

Bump Mapping
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No bump mapping With bump mapping

Images by Paul Baker
www.paulsprojects.net

Bump Mapping
Texture = change in surface normal!

Sphere w/ diffuse texture Swirly bump map Sphere w/ diffuse texture
and swirly bump map



Image Gradients as Bump Maps

Modify surface normal using gradients of texture image
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Intensity Image Horizontal Gradient Vertical Gradient

∇I(u, v) =

�
∂I(u, v)

∂u
,
∂I(u, v)

∂v

�
= (Iu, Iv)

Bump Mapping

Bump map:             contains offsets to normal for each (u,v) pt.                 

Orig. surface pt, normal and param: 

New surface pt and normal: normal: 

Sphere w/ diffuse texture Magnitude Image Gradient Sphere w/ diffuse texture
and swirly bump map

I(u, v)

p,n,S(u, v)

n� = n+
Iu(n× Sv)

|n| +
Iv(n× Su)

|n|

p� = p+ I(u, v)
n

|n|

n = Su × Sv

Bump Map Example

Catherine Bendebury and Jonathan Michaels
CS 184 Spring 2005
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More Bump Mapping

How can you tell a bumped-mapped object from an object in 
which the geometry is explicitly modeled?

Displacement Maps
Move geometry based on texture map
• Expensive and difficult to implement in many rendering systems
• Note silhouette
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Bump Displacement

Paweł Filip
tolas.wordpress.com

base subdivision surface

displaced surface

hand-painted displacement map (detail)



Displacement Mapping

Illumination Maps
Quake introduced illumination maps or light maps to 
capture lighting effects in video games

Texture map:

Texture map
+ light map:

Light map



Environment Maps

Environment maps allow crude reflections

Treat object as infinitesimal  
• Reflection only based on surface normal

Errors hard to notice for non-flat objects
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Environment Maps

Images from Illumination and Reflection Maps: Simulated Objects in Simulated and Real Environments
Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes

Environment Maps
Sphere based parameterization
• Wide angle image or
• Photo of a silver ball

72
Images by Paul Haeberli



Environment Mapping
From ray tracing we know what we’d like to compute
• Trace a recursive ray into the scene—too expensive

If scene is infinitely far away, depends only on direction
• A two-dimensional function
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Environment Map

A function from the sphere to colors, stored as a texture
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Spherical Environment Map

Hand with Re!ecting Sphere. M. C. Escher, 1935. lithograph

75

Convert reflection ray direction to 
point in map



Environment Maps
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Cube based parameterization (see book)

Environment Maps
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Note errors

• Used in 1985 in movie Interface
• Effect by group from  the New York Institute of Technology



Environment Maps
Used in 1985 in movie Interface
• Effect by group from  the New York Institute of Technology
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Shadow Maps
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Pre-render scene from perspective of light source
• Only render Z-Buffer (the shadow buffer)

Render scene from camera perspective
• Compare with shadow buffer
• If nearer light, if further shadow

Shadow Maps
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Shadow Buffer Image w/ Shadows
From Stamminger and Drettakis 
SIGGRAPH 2002 Note: These images don’t really go together, see the paper...



Deep Shadow Maps
Some objects only partially occlude light
• A single shadow value will not work
• Similar to transparency in Z-Buffer
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From Lokovic and Veach
SIGGRAPH 2000

Procedural Textures

Procedural Textures
Generate texture based on some function 
• Well suited for “random” textures
• Often modulate some noise function
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Solid Textures

Texture values indexed by 3D location
Expensive storage

Compute on the fly,
    e.g. Perlin noise 

Procedural Texture

Procedural Texture Gallery






