CS-184: Computer Graphics

Lecture 12: Scan Conversion

Maneesh Agrawala
University of California, Berkeley

Announcements

Assignment 4: due Fri Oct 8 by 11pm
Midterm: Wed Oct 13
Assignment 5: due Fri Nov 5 by 11pm
Today

2D Scan Conversion

- Drawing Lines
- Filling Polygons
- Shading Polygons

Line Drawing

Drawing a Line

Basically, its easy... but for the details
Lines are a basic primitive that needs to be done well...
Drawing a Line

Basically, its easy... but for the details

Lines are a basic primitive that needs to be done well...

From "A Procedural Approach to Style for NPR Line Drawing from 3D models," by Grabli, Durand, Turquin, Sillion
Drawing a Line

Some things to consider

- How thick are lines?
- How should they join up?
- Which pixels are the right ones?

For example:

```
y = m \cdot x + b, x \in [x_1, x_2]

m = \frac{y_2 - y_1}{x_2 - x_1}

b = y_1 - m \cdot x_1
```
Drawing a Line

\[\Delta x = 1 \]
\[\Delta y = m \cdot \Delta x \]

\begin{align*}
x &= x_1 \\
y &= y_1 \\
\text{while}(x \leq x_2) & \\
& \quad \text{plot}(x, y) \\
& \quad x++ \\
& \quad y += \Delta y
\end{align*}

After rounding

\[\Delta x = 1 \]
\[\Delta y = m \cdot \Delta x \]

Accumulation of roundoff errors

How slow is float-to-int conversion?
void drawLine-Error1(int x1, x2, int y1, y2)

float m = \textit{float}(y2-y1)/(x2-x1)
int x = x1
float y = y1

while (x <= x2)
 setPixel(x, \textit{round}(y), PIXEL_ON)
 x += 1
 y += m

void drawLine-Error2(int x1, x2, int y1, y2)

float m = \textit{float}(y2-y1)/(x2-x1)
int x = x1
int y = y1
float e = 0.0

while (x <= x2)
 setPixel(x, y, PIXEL_ON)
 x += 1
 e += m
 if (e >= 0.5)
 y += 1
 e -= 1.0

No more rounding
void drawLine-Error3(int x1,x2, int y1,y2)

 int x = x1
 int y = y1
 float e = -0.5

 while (x <= x2)
 setPixel(x,y,PIXEL_ON)
 x += 1
 e += float(y2-y1)/(x2-x1)
 if (e >= 0.0)
 y+=1
 e-=1.0

void drawLine-Error4(int x1,x2, int y1,y2)

 int x = x1
 int y = y1
 float e = -0.5*(x2-x1) // was -0.5

 while (x <= x2)
 setPixel(x,y,PIXEL_ON)
 x += 1
 e += y2-y1 // was /(x2-x1)
 if (e >= 0.0) // no change
 y+=1
 e-=(x2-x1) // was 1.0

void drawLine-Error5(int x1,x2, int y1,y2)

 int x = x1
 int y = y1
 int e = -(x2-x1) // removed *0.5

 while (x <= x2)
 setPixel(x,y,PIXEL_ON)
 x += 1
 e += 2*(y2-y1) // added 2*
 if (e >= 0.0) // no change
 y+=1
 e-=(x2-x1) // added 2*
void drawLine-Bresenham(int x1, x2, int y1, y2)

int x = x1
int y = y1
int e = -(x2-x1)

while (x <= x2)
 setPixel(x, y, PIXEL_ON)
 x += 1
 e += 2*(y2-y1)
 if (e >= 0.0)
 y+=1
 e-=2*(x2-x1)

Faster
Not wrong

| m | ≤ 1
x₁ ≤ x₂

How thick?

Butt
Round
Square

Ends?

Joining?

Ugly
Bevel
Round
Miter
Filling Polygons

Flood Fill

The idea: fill a “connected region” with a solid color

Term definitions:

The center “1” pixel is 4-connected to the pixels marked “4”, and 8-connected to the pixels marked “8”

Simple 4-Connected Fill

The simplest algorithm to fill a 4-connected region is a recursive one:

```c
FloodFill( int x, int y, int inside_color, int new_color )
{
  if (GetColor( x, y ) == inside_color)
  {
    SetColor( x, y, new_color );
    FloodFill( x+1, y  , inside_color, new_color );
    FloodFill( x-1, y  , inside_color, new_color );
    FloodFill( x,   y+1, inside_color, new_color );
    FloodFill( x,   y-1, inside_color, new_color );
  }
}
```
Flood Fill

Span-Based Algorithm

Definition: a **run** is a horizontal span of identically colored pixels

1. Start at pixel “s”, the seed.
2. Find the run containing “s” (“b” to “a”).
3. Fill that run with the new color.
4. Search every pixel above run, looking for pixels of interior color
5. For each one found,
6. Find left side of that run (“c”), and push that on a stack.
7. Repeat lines 4-7 for the pixels below (“d”).
8. Pop stack and repeat procedure with the new seed

The algorithm finds runs ending at “e”, “f”, “g”, “h”, and “i”

Filling Triangles

- Render an image of a geometric primitive by setting pixel colors

```c
void SetPixel(int x, int y, Color rgba)
```

- Example: Filling the inside of a triangle
Filling Triangles

- Render an image of a geometric primitive by setting pixel colors

  ```c
  void SetPixel(int x, int y, Color rgba)
  ```

- Example: Filling the inside of a triangle

Triangle Scan Conversion

- Properties of a good algorithm
 - Symmetric
 - Straight edges
 - Antialiased edges
 - No cracks between adjacent primitives
 - MUST BE FAST!
Simple Algorithm

- Color all pixels inside triangle

```c
void ScanTriangle(Triangle T, Color rgba) {
    for each pixel P at (x, y) {
        if (Inside(T, P))
            SetPixel(x, y, rgba);
    }
}
```

Line Defines Two Halfspaces

- Implicit equation for a line
 - On line: $ax + by + c = 0$
 - On right: $ax + by + c < 0$
 - On left: $ax + by + c > 0$

Inside Triangle Test

- Point is inside triangle if it is in positive halfspace of all three boundary lines
 - Triangle vertices are ordered counter-clockwise
 - Point must be on the left side of every boundary line
Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{
 for each boundary line L of T {
 Scalar d = L.a*P.x + L.b*P.y + L.c;
 if (d < 0.0) return FALSE;
 }
 return TRUE;
}

Simple Algorithm

- What is bad about this algorithm?

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x, y){
 if (Inside(T, P))
 SetPixel(x, y, rgba);
 }
}

Triangle Sweep-Line Algorithm

- Take advantage of spatial coherence
 - Compute which pixels are inside using horizontal spans
 - Process horizontal spans in scan-line order
- Take advantage of edge linearity
 - Use edge slopes to update coordinates incrementally
Triangle Sweep-Line Algorithm

```c
void ScanTriangle(Triangle T, Color rgba){
    for each edge pair {
        initialize \( x_L \), \( x_R \);
        compute \( \frac{dx_L}{dy_L} \) and \( \frac{dx_R}{dy_R} \);
        for each scanline at \( y \)
            for (int \( x = \text{ceil}(x_L) \); \( x <= x_R \); \( x++ \))
                SetPixel(\( x, y, \text{rgba} \));
        \( x_L += \frac{dx_L}{dy_L} \);
        \( x_R += \frac{dx_R}{dy_R} \);
    }
}
```

Bresenham’s algorithm works the same way, but uses only integer operations!

Hardware Scan Conversion

- Convert everything into triangles
 - Scan convert the triangles

Polygon Scan Conversion

- Fill pixels inside a polygon
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting
 - Holes

What problems do we encounter with arbitrary polygons?
Polygon Scan Conversion

- Need better test for points inside polygon
 - Triangle method works only for convex polygons

Convex Polygon

Concave Polygon

Inside Polygon Rule

- What is a good rule for which pixels are inside?

Inside Polygon Rule

- Odd-parity rule
 - Any ray from P to infinity crosses odd number of edges
Polygon Sweep-Line Algorithm

- Incremental algorithm to find spans, and determine insideness with odd parity rule
 - Takes advantage of scanline coherence

\[\text{Triangle} \quad \text{Polygon} \]

```
void ScanPolygon(Triangle T, Color rgba){
  sort edges by maxy
  make empty “active edge list”
  for each scanline (top-to-bottom) {
    insert/remove edges from “active edge list”
    update x coordinate of every active edge
    sort active edges by x coordinate
    for each pair of active edges (left-to-right)
      SetPixels(x_i, x_{i+1}, y, rgba);
  }
}
```

Filled Polygons
Filled Polygons

Toggle inside/outside flag to "INSIDE"

Filled Polygons

Toggle inside/outside flag to "OUTSIDE"
Filled Polygons

What happens at these locations?

Filled Polygons

If we count ONCE...

Filled Polygons

If we count TWICE...
Filled Polygons

Treat (scan y = vertex y) as (scan y > vertex y)

Filled Polygons

Horizontal edges

Filled Polygons

Final result:
Filled Polygons

“Equality Removal” applies to all vertices
Both x and y coordinates

Filled Polygons

Who does this pixel belong to?

Antialiasing

Boolean on/off for pixels causes problems

- Consider scan conversion algorithm:

- Compare to casting a ray through each pixel center

Recall Nyquist Theorem

- \[\text{Sampling rate} \geq \text{twice highest frequency} \]
Antialiasing

Desired solution of an integral over pixel

Hardware Antialiasing

Supersample pixels

- Multiple samples per pixel
- Average subpixel intensities (box filter)
- Trades intensity resolution for spatial resolution

Shading Triangles
Shading

How do we choose a color for each filled pixel?

Each illumination calculation for a ray from the viewpoint through the image plane provides a radiance sample.

How do we choose where to place samples?
How do we filter samples to reconstruct image?

Emphasis on methods that can be implemented in hardware

Ray Tracing

Simple approach

Perform independent lighting calculation for every pixel.

When is this unnecessary?

\[I = I_E + K_A I_{AL} + \sum_i (K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^{n} I_i) \]

Polygon Shading

Can take advantage of spatial coherence

Illumination calculations for pixels covered by same primitive are related

\[I = I_E + K_A I_{AL} + \sum_i (K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^{n} I_i) \]
Flat Shading
What if a faceted object is illuminated only by directional light sources and is either diffuse or viewed from infinitely far away.

$$I = I_E + K_D I_{DL} + \sum_i \left(K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^n I_i \right)$$

Flat Shading
One illumination calculation per polygon
- Assign all pixels inside each polygon the same color

Flat Shading
Objects look like they are composed of polygons
- OK for polyhedral objects
- Not so good for smooth surfaces
Gouraud Shading

What if smooth surface is represented by polygonal mesh with a normal at each vertex?

\[I = I_E + K_A I_L + \sum_i (K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^n I_i) \]

Method 1: One lighting calculation per vertex

- Assign pixels inside polygon by interpolating colors computed at vertices

Bilinearly interpolate colors at vertices down and across scan lines

\[A = \alpha I_1 + (1-\alpha) I_3 \]
\[B = \beta I_2 + (1-\beta) I_3 \]
\[I = \phi A + (1-\phi) B \]
Gouraud Shading
Smooth shading over adjacent polygons
- Curved surfaces
- Illumination highlights
- Soft shadows

Mesh with shared normals at vertices

Gouraud Shading
Produces smoothly shaded polygonal mesh
- Piecewise linear approximation
- Need fine mesh to capture subtle lighting effects

Flat Shading
Gouraud Shading

Phong Shading
What if polygonal mesh is too coarse to capture illumination effects in polygon interiors?

\[I = I_E + K_A I_L + \sum_i (K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^n I_i) \]
Phong Shading

Method 2: One lighting calculation per pixel
- Approximate surface normals for points inside polygons by bilinear interpolation of normals from vertices

Bilinearly interpolate surface normals at vertices down and across scan lines

\[
\begin{align*}
A &= \alpha N_1 + (1-\alpha)N_3 \\
B &= \beta N_2 + (1-\beta)N_3 \\
L &= \phi A + (1-\phi)B
\end{align*}
\]

Polygon Shading Algorithms

- Wireframe
- Flat
- Gouraud
- Phong
Shading Issues

Problems with interpolated shading:
- Polygonal silhouettes
- Perspective distortion
- Orientation dependence (due to bilinear interpolation)
- Problems computing shared vertex normals
- Problems at T-vertices

Summary

2D polygon scan conversion
- Paint pixels inside primitive
- Sweep-line algorithm for polygons

Polygon Shading Algorithms
- Flat
- Gouraud
- Phong
- Ray casting

Key ideas:
- Sampling and reconstruction
- Spatial coherence

Less expensive
More accurate