
CS-184: Computer Graphics

Lecture 12: Scan Conversion 
Maneesh Agrawala

University of California, Berkeley

Slides based on those of James O’Brien and Greg Humphreys

Announcements

Assignment 4: due Fri Oct 8 by 11pm

Midterm: Wed Oct 13

Assignment 5: due Fri Nov 5 by 11pm
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Today

2D Scan Conversion
• Drawing Lines
• Filling Polygons
• Shading Polygons

Line Drawing 
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Drawing a Line
Basically, its easy... but for the details

Lines are a basic primitive that needs to be done well...
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Drawing a Line
Basically, its easy... but for the details

Lines are a basic primitive that needs to be done well...

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,”
by Grabli, Durand, Turquin, Sillion
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Drawing a Line
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Drawing a Line
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Drawing a Line
Some things to consider

• How thick are lines?
• How should they join up?
• Which pixels are the right ones?

For example:
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Drawing a Line

Inclusive
Endpoints
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Drawing a Line

y= m · x+b,x ∈ [x1,x2]

m=
y2− y1
x2− x1

b= y1−m · x1
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Drawing a Line

Δx= 1
Δy= m ·Δx

x=x1
y=y1
while(x<=x2)
  plot(x,y)
  x++
  y+=Dy
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Drawing a Line

Δx= 1
Δy= m ·Δx
After rounding
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Drawing a Line

Δx= 1
Δy= m ·Δx

Accumulation of
roundoff errors

How slow is float-
to-int conversion?

y+= Δy
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Drawing a Line

|m| ≤ 1 |m| > 1
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Drawing a Line
void drawLine-Error1(int x1,x2, int y1,y2) 
!
  float m = float(y2-y1)/(x2-x1)
  int x = x1
  float y = y1
 
  while (x <= x2)
    
    setPixel(x,round(y),PIXEL_ON)

    x += 1
    y += m

Not exact math

Accumulates errors

void drawLine-Error2(int x1,x2, int y1,y2) 
!
  float m = float(y2-y1)/(x2-x1)
  int x = x1
  int y = y1
  float e = 0.0
 
  while (x <= x2)
    
    setPixel(x,y,PIXEL_ON)

    x += 1
    e += m
    if (e >= 0.5) 
      y+=1
      e-=1.0
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No more rounding

Drawing a Line
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Drawing a Line
void drawLine-Error3(int x1,x2, int y1,y2) 
!
  int x = x1
  int y = y1
  float e = -0.5
 
  while (x <= x2)
    
    setPixel(x,y,PIXEL_ON)

    x += 1
    e += float(y2-y1)/(x2-x1)
    if (e >= 0.0) 
      y+=1
      e-=1.0
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Drawing a Line
void drawLine-Error4(int x1,x2, int y1,y2) 
!
  int x = x1
  int y = y1
  float e = -0.5*(x2-x1)        // was -0.5
 
  while (x <= x2)
    
    setPixel(x,y,PIXEL_ON)

    x += 1
    e += y2-y1                  // was /(x2-x1)
    if (e >= 0.0)               // no change
      y+=1
      e-=(x2-x1)                // was 1.0
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Drawing a Line
void drawLine-Error5(int x1,x2, int y1,y2) 
!
  int x = x1
  int y = y1
  int e = -(x2-x1)              // removed *0.5
 
  while (x <= x2)
    
    setPixel(x,y,PIXEL_ON)

    x += 1
    e += 2*(y2-y1)              // added 2*
    if (e >= 0.0)               // no change
      y+=1
      e-=2*(x2-x1)              // added 2*
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Drawing a Line
void drawLine-Bresenham(int x1,x2, int y1,y2) 
!
  int x = x1
  int y = y1
  int e = -(x2-x1)           
 
  while (x <= x2)
    
    setPixel(x,y,PIXEL_ON)

    x += 1
    e += 2*(y2-y1)              
    if (e >= 0.0)               
      y+=1
      e-=2*(x2-x1)             

Faster
Not wrong

|m| ≤ 1
x1≤ x2
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Drawing a Line
How thick?

Ends?

Butt

Round

Square
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Drawing a Line
Joining?

Ugly Bevel Round Miter



Filling Polygons 

Flood Fill
The idea: fill a “connected region” with a solid color

Term definitions:

The center “1” pixel is 4-connected to the pixels marked 
“4”, and 8-connected to the pixels marked “8”

4

4

4

4

8 8

88
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Simple 4-Connected Fill
The simplest algorithm to fill a 4-connected region is a 
recursive one:

FloodFill( int x, int y, int inside_color, int new_color )
{
  if (GetColor( x, y ) == inside_color)
  {
     SetColor( x, y, new_color );
     FloodFill( x+1, y  , inside_color, new_color );
     FloodFill( x-1, y  , inside_color, new_color );
     FloodFill( x,   y+1, inside_color, new_color );
     FloodFill( x,   y-1, inside_color, new_color );
  }
}
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Flood Fill

Span-Based Algorithm
Definition: a run is a horizontal span of identically colored pixels

1. Start at pixel “s”, the seed.  
2. Find the run containing “s” (“b” to “a”).  
3. Fill that run with the new color.  
4. Search every pixel above run, looking for pixels of interior color  
5. For each one found,
6.      Find left side of that run (“c”), and push that on a stack.  
7. Repeat lines 4-7 for the pixels below (“d”).  
8. Pop stack and repeat procedure with the new seed

The algorithm finds runs ending at “e”, “f”, “g”, “h”, and “i”

s ba
c

d
e f g
h

i

Filling Triangles
• Render an image of a geometric primitive by setting pixel colors

• Example: Filling the inside of a triangle

void SetPixel(int x, int y, Color rgba)

P3

P2

P1



P3

P2

P1

P3

P2

P1

Filling Triangles
• Render an image of a geometric primitive by setting pixel colors

• Example: Filling the inside of a triangle

void SetPixel(int x, int y, Color rgba)

Triangle Scan Conversion
• Properties of a good algorithm

 Symmetric
 Straight edges
 Antialiased edges
 No cracks between adjacent primitives
 MUST BE FAST!

P1
P2

P3

P4

Triangle Scan Conversion

P1
P2

P3

P4

• Properties of a good algorithm

 Symmetric
 Straight edges
 Antialiased edges
 No cracks between adjacent primitives
 MUST BE FAST!



• Color all pixels inside triangle 

Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
  if (Inside(T, P)) 
   SetPixel(x, y, rgba);
 }
}

P3

P2

P1

• Implicit equation for a line

 On line: 	
 ax + by + c = 0
 On right: 	
 ax + by + c < 0
 On left: 	
 ax + by + c > 0

P1

P2

Line Defines Two Halfspaces

L

• Point is inside triangle if it is in positive halfspace of all three 
boundary lines

 Triangle vertices are ordered counter-clockwise
 Point must be on the left side of every boundary line

Inside Triangle Test

P
L1

L2

L3



Inside Triangle Test
Boolean Inside(Triangle T, Point P)
{
 for each boundary line L of T {
  Scalar d = L.a*P.x + L.b*P.y + L.c;
  if (d < 0.0) return FALSE;
 }
 return TRUE;
}

L1

L2

L3

• What is bad about this algorithm? 

Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
  if (Inside(T, P)) 
   SetPixel(x, y, rgba);
 }
}

P3

P2

P1

Triangle Sweep-Line Algorithm
• Take advantage of spatial coherence

 Compute which pixels are inside using horizontal spans
 Process horizontal spans in scan-line order

• Take advantage of edge linearity

 Use edge slopes to update coordinates incrementally

dx
dy



Triangle Sweep-Line Algorithm
void ScanTriangle(Triangle T, Color rgba){
 for each edge pair {
  initialize xL, xR;
  compute dxL/dyL and dxR/dyR;
  for each scanline at y  

    for (int x = ceil(xL); x <= xR; x++) 
    SetPixel(x, y, rgba);
  xL += dxL/dyL;
  xR += dxR/dyR;
 }
}

dxR

dyR
Bresenham’s algorithm
works the same way, 
but uses only integer 

operations!

dxL

dyL

xL xR

Hardware Scan Conversion
• Convert everything into triangles

 Scan convert the triangles

Polygon Scan Conversion
• Fill pixels inside a polygon

 Triangle
 Quadrilateral
 Convex
 Star-shaped
 Concave
 Self-intersecting
 Holes

What problems do we encounter with arbitrary polygons?



Polygon Scan Conversion
• Need better test for points inside polygon

 Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4
L5

L1

L2

L3A

L4
L5

Concave Polygon

L3B

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule

 Any ray from P to infinity crosses odd number of edges



xL

Polygon Sweep-Line Algorithm
• Incremental algorithm to find spans, and determine insideness 

with odd parity rule

 Takes advantage of scanline coherence

xR

Triangle Polygon

Polygon Sweep-Line Algorithm
void ScanPolygon(Triangle T, Color rgba){
 sort edges by maxy
 make empty “active edge list”
 for each scanline (top-to-bottom) {    
 insert/remove edges from “active edge list”
  update x coordinate of every active edge
   sort active edges by x coordinate
  for each pair of active edges (left-to-right)
   SetPixels(xi, xi+1, y, rgba);
  }
}
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Filled Polygons
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Filled Polygons
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Filled Polygons
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Filled Polygons
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Filled Polygons
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Filled Polygons
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Filled Polygons
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Filled Polygons

Treat (scan y = vertex y) as (scan y > vertex y)
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Filled Polygons

Horizontal edges
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Final result:

Filled Polygons
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“Equality Removal” applies to all vertices

Both x and y coordinates

Filled Polygons
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Who does this pixel belong to?

Filled Polygons

1

2

3
4

5

6
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Boolean on/off for pixels causes problems
• Consider scan conversion algorithm:

• Compare to casting a ray through each pixel center

Recall Nyquist Theorem 

• Sampling rate ≥ twice highest frequency

Antialiasing
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Antialiasing

Desired solution of an integral over pixel

Hardware Antialiasing
Supersample pixels

• Multiple samples per pixel
• Average subpixel intensities (box filter)
• Trades intensity resolution for spatial resolution
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P1

P2

P3

Shading Triangles 



Shading
How do we choose a color for each filled pixel? 

Each illumination calculation for a ray from the viewpoint through the image 
plane provides a radiance sample

How do we choose where to place samples?

How do we filter samples to reconstruct image? 

Emphasis on methods that can 
be implemented in hardware 

Ray Tracing
Simple approach

Perform independent lighting calculation for every pixel

When is this unnecessary?

Polygon Shading
Can take advantage of spatial coherence

Illumination calculations for pixels covered by same primitive are related



Flat Shading
What if a faceted object is illuminated only by directional light 
sources and is either diffuse or viewed from infinitely far away

Flat Shading
One illumination calculation per polygon 

 Assign all pixels inside each polygon the same color

N

Flat Shading
Objects look like they are composed of polygons

 OK for polyhedral objects
 Not so good for smooth surfaces



Gouraud Shading
What if smooth surface is represented by polygonal mesh with 
a normal at each vertex?

Watt Plate 7

Gouraud Shading
Method 1: One lighting calculation per vertex

 Assign pixels inside polygon by interpolating colors computed at vertices

Gouraud Shading
Bilinearly interpolate colors at vertices down and across scan lines



Gouraud Shading
Smooth shading over adjacent polygons

 Curved surfaces
 Illumination highlights
 Soft shadows

Mesh with shared normals at vertices
Watt Plate 7

Gouraud Shading
Produces smoothly shaded polygonal mesh

 Piecewise linear approximation 
 Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading

Phong Shading
What if polygonal mesh is too coarse to capture illumination 
effects in polygon interiors?



Phong Shading
Method 2: One lighting calculation per pixel

 Approximate surface normals for points inside polygons by bilinear 
interpolation of normals from vertices

Phong Shading
Bilinearly interpolate surface normals at vertices down and 
across scan lines

Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7



Shading Issues
Problems with interpolated shading:

 Polygonal silhouettes
 Perspective distortion
 Orientation dependence (due to bilinear interpolation)
 Problems computing shared vertex normals
 Problems at T-vertices

Summary
2D polygon scan conversion

 Paint pixels inside primitive
 Sweep-line algorithm for polygons

Polygon Shading Algorithms

 Flat
 Gouraud
 Phong
 Ray casting

Key ideas:

 Sampling and reconstruction
 Spatial coherence

Less expensive

More accurate


