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Aliasing
Aliases are low frequencies in a rendered image that 
are due to higher frequencies in the original image.
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aliasing effects anti-aliased

Jaggies

Are jaggies due to aliasing?  How?

Original:

Rendered:
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Aliasing (temporal)
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http://www.michaelbach.de/ot/mot_wagonWheel/main.swf

Sampling
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How to represent a continuous signal digitally?

image from Wikipedia

Undersampling
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Both frequencies could explain the samples



Aliasing
Aliases are low frequencies in a rendered 

image that are due to higher frequencies in the 
original image.
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What is a (point) sample?
An evaluation

! At an infinitesimal point (2-D)
! Or along a ray (3-D)
! At a particular time (animation/audio)

What is evaluated
! Inclusion (2-D) or intersection (3-D)
! Attributes such as distance and color
! Air pressure (audio)
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Questions for this lecture

How can we model/analyze the sampling process?

How can we reconstruct a signal from samples?

When can we do a good job (i.e. avoid aliasing)?
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Reference sources

Kurt Akeley’s slides

Brian Curless’ slides

Marc Levoy’s notes

Ronald N. Bracewell, The Fourier Transform and its 

Applications, Second Edition, McGraw-Hill, Inc., 1978.
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Ground rules

You don’t have to be an engineer to get this
! We’re looking to develop instinct / understanding
! Not to be able to do the mathematics

We’ll make minimal use of equations
! No integral equations
! No complex numbers

Plots will be consistent
! Tick marks at unit distances
! Signal on left, Fourier transform on the right
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Dimensions

1-D
! Audio signal (time)
! Generic examples (x)

2-D
! Image (x and y)

3-D
! Animation (x, y, and time)

Most examples in this presentation are 1-D
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Sampling and Reconstruction
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Continuous Signal Discrete Samples

Remove high frequencies before sampling

Don’t introduce spurious high frequencies during reconstruction

Displays are discrete, so why do we need to reconstruct anyway?

•Resampling: Scaling up/down, texture mapping, supersampling

Filtering

Filtering is used for both sampling and reconstruction

Sampling: filter high frequencies from continuous signal

• Diffusing filter for cameras or analog audio filter

• Average multiple samples at a higher frequency (Oversampling)

Reconstruction: filter samples to interpolate continuous signal

• Reconstruction filters can introduce higher frequencies

14

One of the most common methods for filtering

Function f and filter g

(f * g)(x) = shift g by x and take product

Commutative, associative, distributive

Extends to higher dimensions and discrete functions

Convolution
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Convolution example

*

=
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Convolution example (2D)
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* =

Sampling and Reconstruction
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x

= =

*

Sampling (pre-filtered signal) Reconstruction (w/ box filter)

comb(x)



Fourier analysis
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The Fourier transform lets us analyze functions in frequency domain

•Natural in conjunction with convolution

Fourier series

Any periodic function can be exactly represented 
by a (typically infinite) sum of harmonic sine and 

cosine functions.

Harmonics are integer multiples of the 
fundamental frequency
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Fourier series example: sawtooth wave

……

1

1-1

21



Sawtooth wave summation

Harmonics Harmonic sums

1

2

3

n
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Sawtooth wave summation (continued)

Harmonics Harmonic sums

5

10

50

n
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Fourier integral

Any function (that matters in graphics) can be 
exactly represented by an integration of sine and 

cosine functions.

Continuous, not harmonic
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Basic Fourier transform pairs

f(x) F(s)
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Basic Fourier transform pairs

f(x) F(s)
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comb(x) comb(s)

Reciprocal property

Swapped left/right 
from previous slide

f(x) F(s)
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Basic Fourier transform pairs (2D)

28

f(x) F(s)
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f(x) F(s)

Basic Fourier transform pairs (2D)

Scaling theorem

f(x) F(s)
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Band-limited transform pairs

F(s)f(x)
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Finite / infinite extent

If one member of the transform pair is finite, the other is infinite
! Band-limited ! infinite spatial extent
! Finite spatial extent ! infinite spectral extent
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Convolution theorem

Something difficult to do in one domain (e.g., 
convolution) may be easy to do in the other (e.g., 

multiplication)

Let f and g be the transforms of f and g.  Then:
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Sampling theory

x

=

*

=

F(s)f(x)

Spectrum is replicated 
an infinite number of 

times
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Reconstruction theory

x

=

*

=

F(s)f(x)
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Sampling at the Nyquist rate

x

=

*

=

F(s)f(x)
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Reconstruction at the Nyquist rate

x

=

*

=

F(s)f(x)
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Sampling below the Nyquist rate

x

=

*

=

F(s)f(x)
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Reconstruction below the Nyquist rate

x

=

*

=

F(s)f(x)
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Reconstruction error

Original Signal

Undersampled
Reconstruction
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Reconstruction with a triangle function

x

=

*

=

F(s)f(x)
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Reconstruction error

Original Signal

Triangle
Reconstruction
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Reconstruction with a rectangle function

x

=

*

=

F(s)f(x)
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Reconstruction error

Original Signal

Rectangle
Reconstruction

44

Sampling a rectangle

x

=

*

=

F(s)f(x)
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Reconstructing a rectangle (jaggies)

x

=

*

=

F(s)f(x)
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Sampling and reconstruction

Aliasing is caused by
! Sampling below the Nyquist rate,
! Improper reconstruction, or
! Both

We can distinguish between
! Aliasing of fundamentals (demo)
! Aliasing of harmonics (jaggies)
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End
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