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Announcements

Assignments 1 and 2 results posted

Assignment 4: due Fri Oct 8 by 11pm
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Today

History and Definitions

Rendering with Projections
• Windows and viewports
• Orthographic projection
• Perspective projection

History and Definitions



History of Projection
Ancient times: Greeks wrote about laws of perspective

Renaissance: Perspective is adopted by artists

Duccio c. 1308
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History of Projection
Later Renaissance: Perspective formalized precisely

da Vinci c. 1498
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Plane Projection in Drawing
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Trace rays from eye through image plane into scene



Plane Projection in Drawing
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Classical Projections
Emphasis on cube-like objects

• traditional in mechanical and architectural drawing

Planar Geometric Projections

Parallel

Oblique

Multiview
Orthographic

Perspective

One-point Two-point Three-pointOrthographic
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Linear Projection

Orthographic Perspective
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Linear Projection

Orthographic Perspective
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Linear Projection
A 2D view

OrthographicPerspective

Linear Projection
Viewing rays are parallel rather than diverging

• Like a perspective camera that’s far away
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OrthographicPerspective

Note how different things can be seen

Parallel lines “meet” at infinity

Linear Projection
A 2D view

Orthographic View

• Projection plane parallel to a coordinate plane
• Projection direction perpendicular to projection plane
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Multiview Orthographic

• Projection plane parallel to a coordinate plane
• Projection direction perpendicular to projection plane
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Multiview Orthographic
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Off-Axis Parallel

axonometric: projection 
plane perpendicular to 
projection direction but not 
parallel to coordinate planes

oblique: projection plane 
parallel to a coordinate 
plane but not perpendicular 
to projection direction.
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Off-Axis Parallel
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axonometric: projection 
plane perpendicular to 
projection direction but not 
parallel to coordinate planes

oblique: projection plane 
parallel to a coordinate 
plane but not perpendicular 
to projection direction.
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Perspective Projection

Vanishing points
• Depend on the scene
• Not intrinsic to camera

“One point perspective”
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Perspective Projection

Vanishing points
• Depend on the scene
• Nor intrinsic to camera

“Two point perspective”
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Perspective Projection

Vanishing points
• Depend on the scene
• Not intrinsic to camera

“Three point perspective”



Perspective
one-point: projection 
plane parallel to a 
coordinate plane (to 
two coordinate axes)

two-point: projection 
plane parallel to one 
coordinate axis

three-point: 
projection plane not 
parallel to a coordinate 
axis
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Rendering With Projections

Ray Generation vs. Projection
Viewing in ray tracing

• start with image point
• compute ray that projects to that point
• do this using geometry

Viewing by projection (primarily used in scan conversion)
• start with 3D point
• compute image point that it projects to
• do this using transforms

Inverse processes
• ray gen. computes the preimage of projection
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Pipeline of  Transformations
Standard sequence of transforms

28

!

!

!

!

!

!

!

!

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation
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transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates
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Screen Space
Monitor has some number of pixels

• e.g. 1024 x 768

Some sub-region used for given program
• You call it a window
• Let’s call it a viewport instead

[0,0]

[1024,768]

[60,350]

[690,705]

[0,0]

[1024,768]
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Screen Space
May not really be a “screen”

• Image file
• Printer
• Other

Sometimes odd
• Upside down
• Hexagonal
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Screen Space

Viewport is somewhere on screen
• You probably don’t care where
• Window System likely manages this detail
• Sometimes you care exactly where

Viewport has a size in pixels
• Sometimes you care (images, text, etc.)
• Sometimes you don’t (using high-level library)

Screen Space
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Pixel centers at integer
addresses

i=3

j=5

 10 × 10  Image Resolution-0.5,-0.5

nx-0.5,ny-0.5

Screen Space

33

Float Pixel Coordinates

u= 0.35 = (i + 0.5)/nx 0,0

1,1

v= 0.55 = (j + 0.5)/ny 
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2D Canonical View Space
Canonical view region

• 2D:  [-1,-1] to [+1,+1]

Fr
om
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.

-1,-1

+1,+1

x=0.0,  y=0.0

2D Canonical Space to Viewport
To draw in image, need coordinates in pixel units, though
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–1
–1

1

1 –.5
–.5

ny – .5

nx – .5

Canonical space Viewport

Windowing Transform
This transformation is worth generalizing: take one axis-aligned 
rectangle or box to another

• A useful, if mundane, piece of a transformation chain
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6.3. Translation 135

In 3D, the same technique works: we can add a fourth coordinate, a homoge-

neous coordinate, and then we have translations:


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0 0 0 1

















x
y
z
1









=









x + xt

y + yt

z + zt

1
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

.

Again, for a vector, the fourth coordinate is zero and the vector is thus unaffected

by translations.

Example 8 (Windowing Transformations) Often in graphics we need to create

a transform matrix that takes points in the rectangle [xl, xh] × [yl, yh] to the
rectangle [x′

l, x
′
h] × [y′

l, y
′
h]. This can be accomplished with a single scale and

translate in sequence. However, it is more intuitive to create the transform from a

sequence of three operations (Figure 6.16):

1. Move the point (xl, yl) to the origin.

2. Scale the rectangle to be the same size as the target rectangle.

3. Move the origin to point (x′
l, y

′
l).

(xl, yl)

(x′l, y′l)

(xh, yh)

(x′h, y′h)

(xh – xl, yh – yl)

(x′h – x′l, y′h – y′l)

Figure 6.16. To take one rectangle (window) to the other, we first shift the lower-left corner
to the origin, then scale it to the new size, and then move the origin to the lower-left corner
of the target rectangle.



Windowing Transform
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136 6. Transformation Matrices

Remembering that the right-hand matrix is applied first, we can write

window = translate (x′
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(6.6)

It is perhaps not surprising to some readers that the resulting matrix has the form

it does, but the constructive process with the three matrices leaves no doubt as to

the correctness of the result.

An exactly analogous construction can be used to define a 3D windowing

transformation, which maps the box [xl, xh]×[yl, yh]×[zl, zh] to the box [x′
l, x

′
h]×

[y′
l, y

′
h] × [z′l, z

′
h]
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It is interesting to note that if we multiply an arbitrary matrix composed of

scales, shears and rotations with a simple translation (translation comes second),

we get
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Thus we can look at any matrix and think of it as a scaling/rotation part and a

translation part because the components are nicely separated from each other.

An important class of transforms are rigid-body transforms. These are com-

posed only of translations and rotations, so they have no stretching or shrinking

of the objects. Such transforms will have a pure rotation for the aij above.
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6.3. Translation 135

In 3D, the same technique works: we can add a fourth coordinate, a homoge-

neous coordinate, and then we have translations:
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Again, for a vector, the fourth coordinate is zero and the vector is thus unaffected

by translations.

Example 8 (Windowing Transformations) Often in graphics we need to create

a transform matrix that takes points in the rectangle [xl, xh] × [yl, yh] to the
rectangle [x′

l, x
′
h] × [y′

l, y
′
h]. This can be accomplished with a single scale and

translate in sequence. However, it is more intuitive to create the transform from a

sequence of three operations (Figure 6.16):

1. Move the point (xl, yl) to the origin.

2. Scale the rectangle to be the same size as the target rectangle.

3. Move the origin to point (x′
l, y

′
l).

(xl, yl)

(x′l, y′l)

(xh, yh)

(x′h, y′h)

(xh – xl, yh – yl)

(x′h – x′l, y′h – y′l)

Figure 6.16. To take one rectangle (window) to the other, we first shift the lower-left corner
to the origin, then scale it to the new size, and then move the origin to the lower-left corner
of the target rectangle.
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136 6. Transformation Matrices

Remembering that the right-hand matrix is applied first, we can write
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It is perhaps not surprising to some readers that the resulting matrix has the form

it does, but the constructive process with the three matrices leaves no doubt as to

the correctness of the result.

An exactly analogous construction can be used to define a 3D windowing

transformation, which maps the box [xl, xh]×[yl, yh]×[zl, zh] to the box [x′
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It is interesting to note that if we multiply an arbitrary matrix composed of

scales, shears and rotations with a simple translation (translation comes second),

we get
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Thus we can look at any matrix and think of it as a scaling/rotation part and a

translation part because the components are nicely separated from each other.

An important class of transforms are rigid-body transforms. These are com-

posed only of translations and rotations, so they have no stretching or shrinking

of the objects. Such transforms will have a pure rotation for the aij above.
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6.3. Translation 135

In 3D, the same technique works: we can add a fourth coordinate, a homoge-

neous coordinate, and then we have translations:
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Again, for a vector, the fourth coordinate is zero and the vector is thus unaffected

by translations.

Example 8 (Windowing Transformations) Often in graphics we need to create

a transform matrix that takes points in the rectangle [xl, xh] × [yl, yh] to the
rectangle [x′

l, x
′
h] × [y′

l, y
′
h]. This can be accomplished with a single scale and

translate in sequence. However, it is more intuitive to create the transform from a

sequence of three operations (Figure 6.16):

1. Move the point (xl, yl) to the origin.

2. Scale the rectangle to be the same size as the target rectangle.

3. Move the origin to point (x′
l, y

′
l).

(xl, yl)

(x′l, y′l)

(xh, yh)

(x′h, y′h)

(xh – xl, yh – yl)

(x′h – x′l, y′h – y′l)

Figure 6.16. To take one rectangle (window) to the other, we first shift the lower-left corner
to the origin, then scale it to the new size, and then move the origin to the lower-left corner
of the target rectangle.
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In 3D, the same technique works: we can add a fourth coordinate, a homoge-

neous coordinate, and then we have translations:
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Again, for a vector, the fourth coordinate is zero and the vector is thus unaffected

by translations.

Example 8 (Windowing Transformations) Often in graphics we need to create

a transform matrix that takes points in the rectangle [xl, xh] × [yl, yh] to the
rectangle [x′

l, x
′
h] × [y′

l, y
′
h]. This can be accomplished with a single scale and

translate in sequence. However, it is more intuitive to create the transform from a

sequence of three operations (Figure 6.16):

1. Move the point (xl, yl) to the origin.

2. Scale the rectangle to be the same size as the target rectangle.

3. Move the origin to point (x′
l, y

′
l).
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Figure 6.16. To take one rectangle (window) to the other, we first shift the lower-left corner
to the origin, then scale it to the new size, and then move the origin to the lower-left corner
of the target rectangle.
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136 6. Transformation Matrices

Remembering that the right-hand matrix is applied first, we can write

window = translate (x′
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(6.6)

It is perhaps not surprising to some readers that the resulting matrix has the form

it does, but the constructive process with the three matrices leaves no doubt as to

the correctness of the result.

An exactly analogous construction can be used to define a 3D windowing

transformation, which maps the box [xl, xh]×[yl, yh]×[zl, zh] to the box [x′
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h]×
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It is interesting to note that if we multiply an arbitrary matrix composed of

scales, shears and rotations with a simple translation (translation comes second),

we get
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Thus we can look at any matrix and think of it as a scaling/rotation part and a

translation part because the components are nicely separated from each other.

An important class of transforms are rigid-body transforms. These are com-

posed only of translations and rotations, so they have no stretching or shrinking

of the objects. Such transforms will have a pure rotation for the aij above.
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136 6. Transformation Matrices

Remembering that the right-hand matrix is applied first, we can write

window = translate (x′
l, y

′
l) scale

(

x′
h − x′

l

xh − xl
,
y′

h − y′
l

yh − yl

)

translate (−xl,−yl)

=







1 0 x′
l

0 1 y′
l

0 0 1















x′

h
−x′

l

xh−xl
0 0

0 y′

h
−y′

l

yh−yl
0

0 0 1















1 0 −xl

0 1 −yl

0 0 1







=









x′

h
−x′

l

xh−xl
0 x′

l
xh−x′

h
xl

xh−xl

0 y′

h
−y′

l

yh−yl

y′

l
yh−y′

h
yl

yh−yl

0 0 1









.

(6.6)

It is perhaps not surprising to some readers that the resulting matrix has the form

it does, but the constructive process with the three matrices leaves no doubt as to

the correctness of the result.

An exactly analogous construction can be used to define a 3D windowing

transformation, which maps the box [xl, xh]×[yl, yh]×[zl, zh] to the box [x′
l, x

′
h]×

[y′
l, y

′
h] × [z′l, z

′
h]















x′

h
−x′

l

xh−xl
0 0 x′
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h
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0 y′

h
−y′

l

yh−yl
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l
yh−y′

h
yl

yh−yl

0 0 z′

h
−z′

l

zh−zl

z′

l
zh−z′

h
zl

zh−zl

0 0 0 1















. (6.7)

It is interesting to note that if we multiply an arbitrary matrix composed of

scales, shears and rotations with a simple translation (translation comes second),

we get








1 0 0 xt

0 1 0 yt

0 0 1 zt

0 0 0 1

















a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1









=









a11 a12 a13 xt

a21 a22 a23 yt

a31 a32 a33 zt

0 0 0 1









.

Thus we can look at any matrix and think of it as a scaling/rotation part and a

translation part because the components are nicely separated from each other.

An important class of transforms are rigid-body transforms. These are com-

posed only of translations and rotations, so they have no stretching or shrinking

of the objects. Such transforms will have a pure rotation for the aij above.
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3D Canonical to 2D Canonical

to implement basic orthographic projection , just toss out z:
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3D Viewport Transformation
But z will be useful later to let’s carry it along for the ride
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Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

Mvp

:3D transform, but mostly just 2D translation & scaleMvp

Orthographic Projection



Camera Space

Generalize canonical view volume
• View volume is rectangular in camera space for orthographic projection 

• Still assume looking down -z axis
• Specify left, right, top, bottom (as in ray tracing) and near, far
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Camera Space to Canonical
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.

Camera space

!

!

!

!

!

!

!

!

136 6. Transformation Matrices

Remembering that the right-hand matrix is applied first, we can write

window = translate (x′
l, y

′
l) scale

(

x′
h − x′

l

xh − xl
,
y′

h − y′
l

yh − yl

)

translate (−xl,−yl)

=
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0 0 1
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0 0 1









.

(6.6)

It is perhaps not surprising to some readers that the resulting matrix has the form

it does, but the constructive process with the three matrices leaves no doubt as to

the correctness of the result.

An exactly analogous construction can be used to define a 3D windowing

transformation, which maps the box [xl, xh]×[yl, yh]×[zl, zh] to the box [x′
l, x

′
h]×

[y′
l, y

′
h] × [z′l, z

′
h]


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h
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













. (6.7)

It is interesting to note that if we multiply an arbitrary matrix composed of

scales, shears and rotations with a simple translation (translation comes second),

we get








1 0 0 xt

0 1 0 yt

0 0 1 zt

0 0 0 1

















a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 0 1









=









a11 a12 a13 xt

a21 a22 a23 yt

a31 a32 a33 zt

0 0 0 1









.

Thus we can look at any matrix and think of it as a scaling/rotation part and a

translation part because the components are nicely separated from each other.

An important class of transforms are rigid-body transforms. These are com-

posed only of translations and rotations, so they have no stretching or shrinking

of the objects. Such transforms will have a pure rotation for the aij above.

Morth =





2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 2
n−f −n+f

n−f

0 0 0 1





Apply 3D version of windowing transform

Pipeline of  Transformations
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Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

Mvp

: Projection from camera space to canonical view vol.

Morth

Morth



Camera (eye) coord system
• e = eye position (any location)
• g = gaze direction (any direction)
• t = view up vector 

(any upward vector in plane bisecting viewer’s head)
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.

Camera (eye) coord system
• e = eye position (any location)
• g = gaze direction (any direction)
• t = view up vector 

(any upward vector in plane bisecting viewer’s head
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.

Camera spaceWorld space



!

!

!

!

!

!

!

!

7.1. Viewing Transformations 149

Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b
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− n+t
n−f
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







(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.
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Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

Mvp

: Translate and rotate world space into camera space

Morth

Mcam

Mcam

Pipeline of  Transformations

56

!

!

!

!

!

!

!

!

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

Mvp

: Local object space transform (from scene graph) to world space

Morth

Mcam
Mm

Mm

Orthographic Transformation 
Start with coordinates in object’s local coordinates

Transform into world coords (modeling transform, Mm)

Transform into eye coords (camera or viewing transform, Mcam)

Orthographic projection, Morth

Viewport transform, Mvp
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Perspective Projection

Perspective Projection
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Perspective Projection

Foreshortening: further objects appear smaller

Some parallel line stay parallel, most don’t

Lines still look like lines

Z ordering preserved (where we care)



Perspective Camera Space
Generalize canonical view volume

• View volume is a frustum for perspective projection 

• Sides of frustum converge at viewpoint (eye)
• But otherwise very similar to orthographic case
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7.1. Viewing Transformations 149

Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.

Perspective camera space Orthographic camera space

Frustum to Rectangular Volume
Approach

• Transform frustum into rectangular volume then use previous machinery
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Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =









2
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0 0 2
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− n+t
n−f

0 0 0 1









(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.

Perspective camera space Orthographic camera space

ps = MvpMorthPMcamMmpo

ps = MvpMorthMcamMmpoOrthographic:

Perspective: P

Perspective Projection (normal)
Perspective is projection by lines through a point; 
“normal” = plane perpendicular to view direction

• Magnification determined by:
• image height
• object depth
• image plane distance

• FOV α = 2 atan(h/(2d))
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Perspective Projection

similar triangles:

64

ys =
d

z
y

Homogeneous Coordinates 

Perspective requires division

“True” purpose of homogeneous coords: projection

65

Homogeneous Coordinates 
Introduced w = 1 coordinate as a placeholder

• Used as a convenience for unifying translation with linear

Can also allow arbitrary w

66



Implications of w

All scalar multiples of a 4-vector are equivalent

When w is not zero, can divide by w
• These points represent normal affine points

When w is zero, it’s a point at infinity, a.k.a. a direction
• This is the point where parallel lines intersect
• Can also think of it as the vanishing point

67

Projective Transform  (Homography)

Allows for division necessary for perspective

Compare to affine transform which leaves w=1
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projective transform

Perspective Projection

similar triangles:
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Perspective Projection w/o Z

to implement perspective, just move z to w:
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Perspective Projection with Z
Straightforward extension doesn’t preserve z coordinates

71





xs

ys
zs
1



 ∼





x̃
ỹ
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z̃ = z so zs =
z̃

z
= 1





xs

ys
zs
1



 ∼





x̃
ỹ
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To carry through z-coordinates use alternative formulation

Perspective Projection with Z

Here 

Set           and preserve depths at near and far planes
• For
• For  
• Solve for a and b we obtain
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z̃ = az + b and zs =
az + b

z

z = n we want zs = n
z = f we want zs = f

d = n

result: a = n+ f and b = −fn (try it)



Perspective Matrix
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P =





n 0 0 0
0 n 0 0
0 0 n + f −fn
0 0 1 0





Perspective Transformation Chain
Transform into world coords (modeling transform, Mm)

Transform into eye coords (camera or viewing transform Mcam)

Perspective matrix, P

Orthographic projection, Morth

Viewport transform, Mvp
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ps = MvpMorthPMcamMmpo
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Issues with Perspective



Normal Perspective and FOV

FOV α = 2 atan(h/(2d))
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Field of View

Angle between rays along opposite edges of perspective image
• Easy to compute only for “normal” perspective
• Have to decide to measure vert., horiz., or diag.

In cameras, determined by focal length
• Confusing because of many image sizes
• For 35mm format (36mm by 24mm image)

• 18mm = 67° v.f.o.v. — super-wide angle
• 28mm = 46° v.f.o.v. — wide angle
• 50mm = 27° v.f.o.v. — “normal”
• 100mm = 14° v.f.o.v. — narrow angle (“telephoto”)
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Field of View
Determines “strength” of perspective effects

close viewpoint
wide angle
prominent 

foreshortening

far viewpoint
narrow angle

little foreshortening
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Choice of Field of  View
In photography, wide angle lenses are specialty tools

• “hard to work with” 
• easy to create weird-looking effects

In graphics, you can type in 
whatever FOV you want

• People often type in big numbers!
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Correction of Geometric Perceptual Distortions in Pictures.

Denis Zorin, Alan H. Barr

California Institute of Technology, Pasadena, CA 91125

Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.
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Correct wide angle image

Choice of Field of  View
In photography, wide angle lenses are specialty tools

• “hard to work with” 
• easy to create weird-looking effects

In graphics, you can type in 
whatever FOV you want

• People often type in big numbers!
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Abstract
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tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
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two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.
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b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.
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ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
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It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
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The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.
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Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.
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The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.
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or parallel projection into a plane.
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Correct telephoto image

Shifted Perspective Projection
Perspective but proj. plane not perpendicular to view direction

• Additional parameter projection plane normal
• Equivalent to cropping out off-center rect. from larger “normal” perspective
• Corresponds to view camera

in photography
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Why Shifted Perspective?
Control convergence of parallel lines

Standard example: architecture
• Buildings are taller than you, so you look up
• Top of building is farther away, so it looks smaller

Solution: make projection plane parallel to facade
• Top of building is the same distance from the projection plane
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camera tilted up: converging vertical lines
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lens shifted up: parallel vertical lines
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