

# CS-184: Computer Graphics

### Lecture 6: Raytracing

Maneesh Agrawala University of California, Berkeley

Slides based on those of James O'Brien and Adrien Treui

### Announcements

Assignment 3: due Fri Sep 17 by Hpm

Assignment 4: due Fri Oct 8 by 11pm

# Raytracing Assignment



### Today

### Raytracing

- Shadows and direct lighting
- Reflection and refraction
- Antialiasing, motion blur, soft shadows, and depth of field

Intersection Tests

• Ray-primitive

### Light in an Environment



Lady writing a Letter with her Maid National Gallery of Ireland, Dublin Johannes Vermeer, I 670

### Global Illumination Effects



PCKTWTCH Kevin Odhner POV-Ray

### Global Illumination Effects



**A Philco 6Z4 Vacuum Tube** Steve Anger POV-Ray

### Global Illumination Effects



**Caustic Sphere** Henrik Jensen (refraction caustic)

### Global Illumination Effects



**Caustic Ring** Henrik Jensen (reflection caustic)

### Global Illumination Effects



Sphere Flake Henrik Jensen

### Early Raytracing



Turner Whitted

### Raytracing

### Scan conversion

- 3D  $\rightarrow$  2D  $\rightarrow$  Image
- Based on transforming geometry
- Details coming in a few lectures

### Raytracing

- 3D → Image
- Geometric reasoning about light rays





# Raytracing

### Raytracing

### Basic tasks

- Build a ray
- Figure out what a ray hits
- Compute shading

### Building Eye Rays



# Building Eye Rays





# Building Eye Rays



### Building Eye Rays

Nonlinear projections

- Non-planar projection surface
- Variable eye location



### Examples



Multiple-Center-of-Projection Images P. Rademacher and G. Bishop SIGGRAPH 1998

# Examples



Spherical and Cylindrical Projections Ben Kreunen From Big Ben's Panorama Tutorials

### Building Eye Rays Ray equation





### Shadow Rays

Test for occluder

- No occluder, shade normally ( e.g. Phong model )
- Yes occluder, skip light ( don't skip ambient )

### Self shadowing

- Add shadow bias
- Test object ID





Correct

Self-shadowing

### **Reflection Rays**

### Recursive shading

- · Ray bounces off object
- Treat bounce rays (mostly) like eye rays
- Shade bounce ray and return color
  - Shadow rays
  - Recursive reflections
- · Add color to shading at original point
  - Specular or separate reflection coefficient





### Reflection Rays

### **Recursion Depth**

- Truncate at fixed number of bounces
- Multiplier less than J.N.D.



### Refracted Rays

Transparent materials bend light • Snell's Law  $\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i}$  where  $n_t$ where  $\,n_i,n_t$  are indices of refraction  $\sin heta_t = rac{n_i}{n_t} \sin heta_i$  (see book for clever alternative formula)



# Refracted RaysTransparent materials bend light• Snell's Law $\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i}$ Snell's Law $\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i}$ Snell's Law $\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i}$ Total (internal) reflectionSin $\theta_t > 1$ Total (internal) reflectionIght trapped in material $n_i$ $n_i$ $n_i$ $n_i$ $\theta_i$ $n_i$ $n_i$ $n_i$ $n_i$ $n_i$ $n_i$ $n_i$ $n_i$



# Total Internal Reflection



### Refracted Rays



### Refracted Rays

For dielectric materials reflectivity varies with incident angle heta

• Schlick approximation to Fresnel Equations

$$k_t(\theta_i) = k_0 + (1 - k_0)(1 - \cos \theta_i)^5$$
$$k_0 = \left(\frac{n_t - 1}{n_t + 1}\right)^2$$

- Attenuation (due to impurities)
  - Wavelength (color) dependent
  - Exponential with distance





# "Distribution" Raytracing





### "Distribution" Raytracing

Use multiple rays for reflection and refraction

- At each bounce send out many extra rays
- Quasi-random directions
- Use BRDF (or Phong approximation) for weights

How many rays?







### Soft Shadows

Soft shadows result from non-point lights

• Some part of light visible, some other part occluded







# Motion Blur

### Distribute rays over time

• More when we talk about animation...



## Depth of Field

Distribute rays over a lens assembly





Kolb, Mitchell, and Hanrahan SIGGRAPH 1995

### Depth of Field



No DoF



Multiple images for DoF

Jittered rays for DoF



Even more rays



More rays





| Ray -vs- Sphere Test                                      |  |
|-----------------------------------------------------------|--|
| Ray equation: $\mathbf{R}(t) = \mathbf{A} + t \mathbf{D}$ |  |
| Implicit equation for sphere: $ { m X}-{ m C} ^2-r^2=0$   |  |
| Combine: $ \mathbf{R}(t) - \mathbf{C} ^2 - r^2 = 0$       |  |
| $ A+tD-C ^2-r^2=0$                                        |  |
| Quadratic equation in $t$                                 |  |
| D                                                         |  |
| A                                                         |  |
| SI                                                        |  |



### Ray -vs-Triangle

Ray equation: R(t) = A + t DTriangle in barycentric coordinates:  $X(\beta,\gamma) = V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1)$ 

### Ray -vs-Triangle

Ray equation:  $\mathbf{R}(t) = \mathbf{A} + t \mathbf{D}$ Triangle in barycentric coordinates:  $\mathbf{X}(\beta, \gamma) = \mathbf{V}_1 + \beta(\mathbf{V}_2 - \mathbf{V}_1) + \gamma(\mathbf{V}_3 - \mathbf{V}_1)$ Combine:  $\mathbf{V}_1 + \beta(\mathbf{V}_2 - \mathbf{V}_1) + \gamma(\mathbf{V}_3 - \mathbf{V}_1) = \mathbf{A} + t \mathbf{D}$ Solve for  $\beta$ ,  $\gamma$ , and t• 3 equations 3 unknowns • Beware divide by near-zero • Check ranges