CS-184: Computer Graphics

Lecture 5: 3D Transformations & Rotations

Maneesh Agrawala
University of California, Berkeley

Slides based on those of James O'Brien and Adrien Treuille

Today

Transformations in 3D

Rotations

* Matrices

+ Euler angles

+ Exponential maps
» Quaternions

BN ransiormations

Generally, the extension from 2D to 3D is straightforward

+ Vectors get longer by one
+ Matrices get extra column and row
+ SVD still works the same way

+ Scale, Translation, and Shear all basically the same

Rotations get interesting

Translations

08
A=101 t)’ Feir 2D
00 1_
(100 ¢,]
0N 10y
A — 0011, For 3D
O 00 1
Scales
s, 0 0]
ja— | O Sy 0 For 2D
00 1_
(s, 0 0 O]
R0 00
JAS— 00 s, 0 For 3D
0 00 1 (Axis-aligned!)
Shears
K 1 {6 0
A= hyx 10 For ZB
0O O 1_
R, O]
| 1 by O
= hzx hzy 1 0O For 3D
2 0 1_ (Axis-aligned!)

1 h. O
AT By, 0
“= | il

- O 1_

Shears y into x
Rotations

3D Rotations fundamentally more complex than in 2D

+ 2D:amount of rotation

+ 3D:amount and axis of rotation

P -
2D

3

Rotations

Rotations still orthonormal

Det(R) =1+ —1
Preserve lengths and distance to origin
3D rotations DO NOT COMMUTE!

Right-hand rule
DO NOT COMMUTE!

Unique matrices

Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third out of plane axis

Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third out of plane axis

cos(B) —sin(0)

0
sin(B) cos(6) O
0 0 1]

@ Note: looks same as R }?

R

_ [cos(8) —sin(6)
i [Zis(e) CZSIEG)}

Axis-aligned 3D Rotations

1 0 0
R= [0 cos(B) —sin(6)

0 SO o (0) - Zis in youlRiEHe=n

[cos(0) O sin(0) 9
R, o
| —sin(0) 0 cos(0) |

[cos(0) —sin(0) O]
R.= |sin(B) cos(B) O
0 0 1

SN

Axis-aligned 3D Rotations

1 0 0
R.= |0 cos(B) —sin(0)

0 sin(0 0
g s cos(0) Also right handed “Zup”

[cos(6) O sin(@):l 2

RE(Eo 1 o0
| —sin(0) 0 cos(0)

[cos(0) —sin(0) O]

R.= |sin(B) cos(B) O
0 0 1

Axis-aligned 3D Rotations

Also known as “‘direction-cosine” matrices

= 0 0 cos(0) O sin(0)
RE— [0 cos(0) —sin(G)] R = [0 10]
0 sin(B) cos(0) —sin(6) 0 cos(B)

R.= [sin(0) cos(0)

0 0

cos(0) —sin(0) 0]
0
1

Arbitrary Rotations

Can be built from axis-aligned matrices:

R=R: R; R;

Result due to Euler.. hence called
Euler Angles

Easy to store in vector

But NOT a vector.

R =rot(x,y,7)

Arbrtrary Rotations

R=R: R;-R;

Euler Angles and Gimbal Lock

Order of Euler angles matters
Gimbal-lock

Moving -vs- fixed axes

» Reverse of each other

Gimbal Lock

Exponential Maps

Direct representation of arbitrary rotation
AKA: axis-angle, angular displacement vector
Rotate O degrees about some axis

Encode O as length of vector

0=|r|

>

Exponential Maps

Given vector T, how to get matrix R

Method from text:
|. rotate about x axis to put r into the x-y plane
rotate about z axis align r with the x axis

rotate @ degrees about x axis
undo #2 and then #|
composite together

Uil = L9

Exponential Maps

e
'_

Vector expressing a point has two parts

> XH does not change
0 XJ_rotates like a 2D point

Exponential Maps

r

X

/

Exponential Maps

r
AL = 1P 3% 5%

X

/

Exponential Maps

r

AL = 1P X 5%

X

/

—x) =% X (f x x)

Exponential Maps

r

/XH
—x; =1 X (f X x) X1
Exponential Maps
%XH
—x, =1 X (I XX) X1

Xrot = X sin(f) + x, cos(0)

Exponential Maps

r
X =Fxx x

0 XH

—x; =% X (f X x) X1

/
X =X|| + Xrot

x' = x| + x¢ sin(#) + x cos(f)

Exponential Maps

Rodriguez Formula

|

+sin(0) (f X x)
—cos(0)(F x (' x X))
X, - Linear in x
/ N

X
. : i
Actually a minor variation

Exponential Maps

Building a matrix form:

x' = ((Ff") +sin(0)(Fx) —cos(0)(Fx)(Fx))x

D 2
Ex)=|# 0 -
—, P 0

Antisymmetric matrix
(ax)b=axb
Easy to verify by expansion

Exponential Maps

Allows tumbling

No gimbal-lock!

Orientations are space within TT-radius ball
Nearly unique representation

Singularities on shells at 21T

Nice for interpolation

Exponential Maps

Why exponential?

: . 3
Recall series expansion of €

2 S

ra X X X
e = —|—1—!—|—2—!—|—§‘|‘"'

Exponential Maps

Why exponential?
Recall series expansion of e’
Euler: what happens if you put in i0 for x

0_ 1.8 -0 —io° o*
S EUNTRECTRRRE TR T

_ (i (6 -0
= +7+E+”. sletl F-FT—F

= cos(0) +isin(0)

Exponential Maps

Why exponential?
B8 (£x)207 (X207 iR

e(f‘X)GZI
1! 21 3! 4!
But notice that: (£x)? = —(#x)
2 0 2 262 _ (% 63 [~ 264
N I e o S

1! i 21 3! 4!

Exponential Maps

PSR (0202 " —(£x)6° " —(£x)%0*

()®
= Ty 31 41

¢ — (#x)5in(0) + I+ (#x)%(1 —cos())
But notice that: I+ (£x)? = &t

e(FX)0 — #it 4 (£x)sin(h) — (#x)2 cos()

Quaternions

More popular than exponential maps
Natural extension of €' = cos() +isin(6)
Due to Hamilton (1843)

* Interesting history

* Involves “hermaphroditic monsters”

Quaternions

Uber-Complex Numbers

q— (Z17Z27Z37S) = (Z,S)
qa=iz1+ ji2+kzz+s
ii—k i

P=P=kK=-1 =1 = —i
ki=j ik=—j

Quaternions

Multiplication natural consequence of defn.
Conjugate

¢ =(=2,5)
Magnitude

lall*=2-2+5"=q-q"

Quaternions

Vectors as quaternions

v — (V,O)
Rotations as quaternions
0 §)

r = (Fsin,cos 5)
Rotating a vector

i *
X I X

Composing rotations

r—ry-rp) <= Compareto Exp.Map

Quaternions

No tumbling

No gimbal-lock

Orientations are “double unique”

Surface of a 3-sphere in 4D HrH =

Nice for interpolation

Interpolation

Euler Angles Quaternions

40)

Rotation Matrices

Consider:

rxx rxy rxz
RUEw 7, 7,
T

5% zy zz

=2 @ =

0 0
1 0
O 1

Columns are coordinate axes after transformation (true for general matrices)

Rows represent axes that will rotate into canonical xyz-axes after rotation
(not true for general matrices)

Rotation Matrices

Eigen system

* One real eigenvalue
* Real axis is axis of rotation
* Imaginary values are 2D rotation as complex number

Logarithmic formula

0

(tx)=1In(R) = 2Sine(R—RT)
(R
0 = cos (f)

Similar formulae as for exponential... ..

Hierarchical Scene Composition Hierarchical Scene Descriptions
GROUPS:
A fully instantiated, Scene Graph (DAG)

containing
hierarchical h
Scene Tree and m
with Transformations
on all Instances:

(for consistency)

Window

jE -

House

Frame Flower Glass Hill

OBJECTS:

(=Inclusions, Invocations)

© Viewing transformation

4

Scene Graphs

Draw scene using both pre-and-post-order traversal

+ Apply node, draw children, undo node (if applicable)
Nodes can do pretty much anything

+ Geometry, transformations, groups, color; switch, scripts, etc.

*+ Node types are application/implementation specific
Requires a stack to implement “undo” node post children
Nodes can cache their children
Instances make it a DAG, not strictly a tree

Will use these trees later for bounding box trees

Note:

Rotation stuff in the book is a bit weak... luckily you have these
nice slides!

