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Today

Transformations in 3D

Rotations

* Matrices

+ Euler angles

+ Exponential maps
» Quaternions

BN ransiormations

Generally, the extension from 2D to 3D is straightforward

+ Vectors get longer by one
+ Matrices get extra column and row
+ SVD still works the same way

+ Scale, Translation, and Shear all basically the same

Rotations get interesting




Translations
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Shears y into x
Rotations

3D Rotations fundamentally more complex than in 2D

+ 2D:amount of rotation

+ 3D:amount and axis of rotation

P -
2D
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Rotations

Rotations still orthonormal

Det(R) =1+ —1
Preserve lengths and distance to origin
3D rotations DO NOT COMMUTE!

Right-hand rule
DO NOT COMMUTE!

Unique matrices




Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third out of plane axis

Axis-aligned 3D Rotations

2D rotations implicitly rotate about a third out of plane axis
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Axis-aligned 3D Rotations
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Axis-aligned 3D Rotations
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Axis-aligned 3D Rotations

Also known as “‘direction-cosine” matrices

= 0 0 cos(0) O sin(0)
RE— [0 cos(0) —sin(G)] R = [ 0 10 ]
0 sin(B) cos(0) —sin(6) 0 cos(B)

R.= [sin(0) cos(0)

0 0

cos(0) —sin(0) 0]
0
1

Arbitrary Rotations

Can be built from axis-aligned matrices:

R=R: R; R;

Result due to Euler.. hence called
Euler Angles

Easy to store in vector

But NOT a vector.

R =rot(x,y,7)




Arbrtrary Rotations

R=R: R;-R;

Euler Angles and Gimbal Lock

Order of Euler angles matters
Gimbal-lock

Moving -vs- fixed axes

» Reverse of each other

Gimbal Lock




Exponential Maps

Direct representation of arbitrary rotation
AKA: axis-angle, angular displacement vector
Rotate O degrees about some axis

Encode O as length of vector

0=|r|

>

Exponential Maps

Given vector T, how to get matrix R

Method from text:
|.  rotate about x axis to put r into the x-y plane
rotate about z axis align r with the x axis

rotate @ degrees about x axis
undo #2 and then #|
composite together

Uil = L9

Exponential Maps
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Vector expressing a point has two parts

> XH does not change
0 XJ_rotates like a 2D point




Exponential Maps
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Exponential Maps
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Xrot = X sin(f) + x, cos(0)

Exponential Maps
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Exponential Maps

Rodriguez Formula
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Actually a minor variation ... ..

Exponential Maps

Building a matrix form:

x' = ((Ff") +sin(0)(Fx) —cos(0)(Fx)(Fx))x

D 2
Ex)=|# 0 -
—, P 0

Antisymmetric matrix
(ax)b=axb
Easy to verify by expansion

Exponential Maps

Allows tumbling

No gimbal-lock!

Orientations are space within TT-radius ball
Nearly unique representation

Singularities on shells at 21T

Nice for interpolation




Exponential Maps

Why exponential?

: . 3
Recall series expansion of €
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Exponential Maps

Why exponential?
Recall series expansion of e’
Euler: what happens if you put in i0 for x
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Exponential Maps

Why exponential?
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Exponential Maps
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Quaternions

More popular than exponential maps
Natural extension of €' = cos() +isin(6)
Due to Hamilton (1843)

* Interesting history

* Involves “hermaphroditic monsters”

Quaternions

Uber-Complex Numbers
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Quaternions

Multiplication natural consequence of defn.
Conjugate

¢ =(=2,5)
Magnitude

lall*=2-2+5"=q-q"

Quaternions

Vectors as quaternions

v — (V,O)
Rotations as quaternions
0 §)

r = (Fsin,cos 5)
Rotating a vector
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Composing rotations

r—ry-rp) <= Compareto Exp.Map

Quaternions

No tumbling

No gimbal-lock

Orientations are “double unique”

Surface of a 3-sphere in 4D HrH =

Nice for interpolation




Interpolation

Euler Angles Quaternions

40)

Rotation Matrices

Consider:

rxx rxy rxz
RUEw 7, 7,
T

5% zy zz

=2 @ =

0 0
1 0
O 1

Columns are coordinate axes after transformation (true for general matrices)

Rows represent axes that will rotate into canonical xyz-axes after rotation
(not true for general matrices)

Rotation Matrices

Eigen system

* One real eigenvalue
* Real axis is axis of rotation
* Imaginary values are 2D rotation as complex number

Logarithmic formula

0

(tx)=1In(R) = 2Sine(R—RT)
(R
0 = cos (f)

Similar formulae as for exponential... ..




Hierarchical Scene Composition Hierarchical Scene Descriptions
GROUPS:
A fully instantiated, Scene Graph (DAG)

containing
hierarchical h
Scene Tree and m
with Transformations
on all Instances:

(for consistency)

Window

jE -

House

Frame  Flower Glass Hill

OBJECTS:

(=Inclusions, Invocations)

© Viewing transformation

4

Scene Graphs

Draw scene using both pre-and-post-order traversal

+ Apply node, draw children, undo node (if applicable)
Nodes can do pretty much anything

+ Geometry, transformations, groups, color; switch, scripts, etc.

*+ Node types are application/implementation specific
Requires a stack to implement “undo” node post children
Nodes can cache their children
Instances make it a DAG, not strictly a tree

Will use these trees later for bounding box trees

Note:

Rotation stuff in the book is a bit weak... luckily you have these
nice slides!




