The Compleat Angler

by

Turner Whitted

Bell Laboratories Holmdel, New Jersey 07733

Lecture 4:2D Transformations

Maneesh Agrawala University of California, Berkeley

Slides based on those of James O'Brien and Adrien Treui

Announcements

Assignment 2: due Fri Sep 10 by Hpm

Assignment 3: due Fri Sep 17 by 11pm

Today

2D Transformations

- "Primitive" Operations
- Scale, Rotate, Shear, Flip, Translate
- Homogenous Coordinates
- SVD
- Start thinking about rotations...

Introduction

Transformation: An operation that changes one configuration into another

For images, shapes, etc.

Geometric transformation maps positions that define object to new positions Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Original

<section-header><section-header><complex-block><image><image><image><image><image><image><image><image><image><image>

Linear -vs- Nonlinear

Geometric -vs- Color Space

Color Space Transform (edge finding)

Linear Geometric (flip)

Instancing

Instancing

Reuse geometric descriptions Saves memory

Linear is Linear

Composing two linear function is still linear Transform polygon by transforming vertices

$$f(x) = a + bx \qquad g(f) = c + df$$
$$g(x) = c + df(x) = c + ad + bdx$$

g(x) = a' + b'x

Points in Space

Represent point in space by vector in $\ R^n$

- Relative to some origin!
- Relative to some coordinate axes!

Later we'll add something extra...

Linear is Linear

Polygons defined by points

Edges defined by interpolation between two points

Interior defined by interpolation between all points

Linear interpolation

Linear is Linear

Composing two linear function is still linear Transform polygon by transforming vertices

Basic Transformations

Basic transforms are: rotate, scale, and translate Shear is a composite transformation!

Rotations

Rotations are positive counter-clockwise

Consistent w/ right-hand rule

Don't be different...

Note:

- rotate by zero degrees give identity
- rotations are modulo 360 (or 2π)

Rotations

Preserve lengths and distance to origin Rotation matrices are orthonormal

$$\text{Det}(\mathbf{R}) = 1 \neq -1$$

In 2D rotations commute...

• But in 3D they won't!

Scales

Diagonal matrices

- Diagonal parts are scale in X and scale in Y directions
- Negative values flip
- Two negatives make a positive (180 deg. rotation)
- Really, axis-aligned scales

Shears

Shears are not really primitive transforms Related to non-axis-aligned scales More shortly.....

Translation

This is the not-so-useful way:

$$\mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
Translate

Note that its not like the others.

Arbitrary Matrices

For everything but translations we have:

 $\mathbf{x}' = \mathbf{A} \cdot \mathbf{x}$

Soon, translations will be assimilated as well

What does an arbitrary matrix mean?

Decomposing Matrices

We can force Q and R to have Det=1 so they are rotations

Any matrix is now:

- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales

Composition

Matrix multiplication composites matrices

p'= BAp

''Apply ${\bf A}$ to ${\bf p}$ and then apply ${\bf B}$ to that result.''

p' = B(Ap) = (BA)p = Cp

Several transformations composited to one

Translations still left out...

$$\mathbf{p'} = \mathbf{B}(\mathbf{A}\mathbf{p} + \mathbf{t}) = \mathbf{P} + \mathbf{B}\mathbf{t} = \mathbf{C}\mathbf{p} + \mathbf{u}$$

Composition

Transformations built up from others

SVD builds from scale and rotations

Also build other ways

i.e. 45 deg rotation built from shears

Homogeneous Coordinates

Move to one higher dimensional space

• Append a 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \widetilde{\mathbf{p}} = \begin{bmatrix} p_y \\ p_y \\ 1 \end{bmatrix}$$

• For directions the extra coordinate is a zero

Homogeneous Translation $\widetilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$ $\widetilde{\mathbf{p}}' = \widetilde{\mathbf{A}}\widetilde{\mathbf{p}}$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

$$\widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

Scale About Arb. Axis

Scale About Arb. Axis

Step 1:Translate axis to origin Step 2: Rotate axis to align with one of the coordinate axes

Scale About Arb. Axis

Step I:Translate axis to origin

Step 2: Rotate axis to align with one of the coordinate axes

Step 3: Scale as desired

Scale About Arb. Axis

Step 1:Translate axis to originStep 2: Rotate axis to align with one of the coordinate axesStep 3: Scale as desiredSteps 4&5: Undo 2 and 1 (reverse order)

Order Matters!

The order that matrices appear in matters

$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B}\mathbf{A}$

Some special cases work, but they are special

But matrices are associative

$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$

Think about efficiency when you have many points to transform...

Matrix Inverses

In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}

Special cases:

- Translation: negate t_{x} and t_{y}
- Rotation: transpose
- Scale: invert diagonal (axis-aligned scales)

Others:

- Invert matrix
- Invert SVD matrices

Point Vectors / Direction

Points in space have a 1 for the "w" coordinate

What should we have for $\mathbf{a} - \mathbf{b}$?

- $\cdot w = 0$
- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense

Suggested Reading

Fundamentals of Computer Graphics by Pete Shirley

- Chapter 6
- And re-read chapter 5 if your linear algebra is rusty!