
2/29/12	

1	

CS160: User Interface Design	

Widgets, Events, MVC 02/29/12

Berkeley
U N I V E R S I T Y O F C A L I F O R N I A

Video Puppetry: 	

SIGGRAPH Asia 2008	

Authors:	
 Connelly	
 Barnes,	
 David	
 E.	
 Jacobs,	
 Jason	
 Sanders,	
 Dan	
 B	
 Goldman,	
 	

Szymon	
 Rusinkiewicz,	
 Adam	
 Finkelstein,	
 Maneesh	
 Agrawala	

2/29/12	

2	

Results: Indiv. Heuristic Evaluation	

Grades on bSpace now	

Regrades: Write down where you think you deserve more points and submit physical copy
to us. We will regrade entire assignment. Your grade can decrease during regrading.	

	

Stats:
 Num: 87
 Mean: 19.13
 Median: 20.0
 Stddev: 3.05

Results: Contextual Inquiry	

Grades on bSpace now	

Regrades: Write down where you think you deserve more points and submit physical copy
to us. We will regrade entire assignment. Your grade can decrease during regrading.	

	

Stats:
 Num: 87
 Mean: 50.48
 Median: 51.0
 Stddev: 5.36

2/29/12	

3	

Contextual Inquiry	

Group: Pajama Party	

Ordering fast food for ���
deaf users	

	

	

	

	

	

	

http://www.youtube.com/watch?v=o1sswVMmSO4&feature=player_embedded	

Assignment: Low Fidelity Prototype	

Due Mar 5	

Identify project mission statement	

	

Create a low-fidelity paper prototype that supports 3 tasks	

1 easy, 1 moderate, 1 difficult task	

	

Create a video showing your prototype:	

How it supports the 3 tasks	

Context in which is will be used (back story)	

Your video must include narration!	

	

 	

2/29/12	

4	

Flex arms available for your video	

Widgets, Layouts, Events	

2/29/12	

5	

Minimal “interactive” program	

Do until a quit command: {	

	

wait for user input	

	

switch (input-cmd) {	

	

 	

case insert: do-insert(…)	

	

 	

case delete: do-delete(…)	

	

 	

case backspace: …	

	

(optionally) update display	

}	

Minimal “interactive” program	

Can’t use this (global) approach for window systems,
because the result of a user command depends
on the active window (and the active
component within that window).	

	

Too many possible combinations of���
input x target window, and window structure is
dynamic.	

	

2/29/12	

6	

GUI Toolkits	

Most user interfaces today are written using toolkits
(e.g., QT, Cocoa, Java Swing, GTK, Android SDK,…)	

Toolkits come with libraries of interactive elements
(widgets) and layouts	

Frequently used interactive components 	

Toolkits also define an architecture: 	

A standard way to handle input and output 	

Usually wrap main() – application programmer writes pieces
of code that plug into the architecture	

The architecture specifies how to write new widgets for the
library	

	

	

Widgets	

2/29/12	

7	

Android Widgets	

Java Swing Widgets	

2/29/12	

8	

Windows Vista Widgets	

Mac Cocoa Widgets	

Interface Builder - Library

2/29/12	

9	

Widgets	

Encapsulation and organization of interactive controls	

Class hierarchy encapsulating widgets	

Top-level “Component” class	

Implements basic bounds management, and event processing	

	

Drawn using underlying 2D graphics library	

	

Input event processing and handling	

Typically mouse and keyboard events	

	

Bounds management (damage/redraw)	

Only redraw areas in need of updating	

User Interface Components	

Each component is an object with	

Bounding box	

Paint method for drawing itself	

Drawn in the component’s coordinate system	

Callbacks to process input events	

Mouse clicks, typed keys	

	

Java: 	

public void paint(Graphics g) {	

 g.fillRect(…); // interior	

 g.drawString(…); // label	

 g.drawRect(…); // outline	

}	

	

Cocoa: 	

(void)drawRect:(NSRect)rect	

2/29/12	

10	

2D Graphics Model	

Widget canvas and coordinate system	

Origin often at top-left, increasing down and to the right	

Units depend on output medium (e.g., pixels for screen)	

Rendering methods	

Draw, fill shapes	

Draw text strings	

Draw images	

(0,0)

(0,0)

Working with Widgets	

Make the common case fast and the uncommon case
possible.	

	

Common case: assemble standard widgets into a layout	

Uncommon case: write your own widget.	

	

2/29/12	

11	

Working with Widgets	

Make the common case fast and the uncommon case
possible.	

	

Common case: assemble standard widgets into a layout	

Uncommon case: write your own widget.	

	

Custom Components in AndroidSDK :	

•  Extend View class	

•  Paint method: Override onDraw()	

•  Bounding box: Override onMeasure()	

•  Callbacks: Override onTouchEvent(), onKeyDown,
…

Composing a User Interface	

Label TextArea

Buttons

How might we instruct the computer to generate this layout?

2/29/12	

12	

Absolute Layout	

Label (x=0,	
 y=0,	
 w=350,	
 h=20)	

TextArea
(x=0,	
 y=20,	
 w=350,	
 h=150)	

Buttons
(x=200,	
 y=175,	
 w=45,	
 h=30)	

(x=250,	
 y=175,	
 w=85,	
 h=30)	

Absolute layout is inflexible and doesn’t scale or resize well. ���
(But: great for prototyping because it’s fast!)	

Containment Hierarchy	

Window	

Panel	

Label	
 TextArea	
 Panel	

BuXon	
 BuXon	

2/29/12	

13	

Containment Hierarchy	

Window	

Panel	

Label	
 TextArea	
 Panel	

BuXon	
 BuXon	

Principle:	
 Each	
 container	
 is	
 responsible	
 for	
 alloca[ng	
 space	
 and	
 posi[oning	
 its	
 contents.	

Common Hierarchical Layouts	

1D Horizontal or Vertical List	

2D Grid	

Constraint-based Layout (Struts+Springs)	

 	

	

2/29/12	

14	

Example Declarative Layout (WPF)	

<StackPanel>
 <Label>Enter Text:</Label>
 <TextBox TextWrapping="Wrap”>…</TextBox>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Button>Ok</Button>
 <Button>Cancel</Button>
 </StackPanel>
</StackPanel>

Example Declarative Layout (WPF)	

<StackPanel>
 <Label>Enter Text:</Label>
 <TextBox TextWrapping="Wrap”>…</TextBox>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Button>Ok</Button>
 <Button>Cancel</Button>
 </StackPanel>
</StackPanel>

2/29/12	

15	

Example Declarative Layout (WPF)	

<StackPanel>
 <Label>Enter Text:</Label>
 <TextBox TextWrapping="Wrap”>…</TextBox>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Button>Ok</Button>
 <Button>Cancel</Button>
 </StackPanel>
</StackPanel>

Android Layouts	

<LinearLayout orientation="horizontal">
 <TextView text="red" background=”…"/>
 <TextView text="green" background=”…"/>
 <TextView text="blue" background=”…”/>
 <TextView text="yellow" background=”…”/>
</LinearLayout>

2/29/12	

16	

Android Layouts	

<LinearLayout orientation="vertical">
 <TextView text="row one" .../>
 <TextView text="row two" .../>
 <TextView text="row three" .../>
 <TextView text="row four" .../>
</LinearLayout>

In Android	

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout orientation="vertical”…>

 <TextView text="Enter Text:”></TextView>
 <EditText text="lorem ipsum...” ></EditText>
 <LinearLayout orientation="horizontal”>
 <Button text=“Ok”></Button>
 <Button text=“Cancel”></Button>
 </LinearLayout>
</LinearLayout>

2/29/12	

17	

Android Layouts	

<LinearLayout orientation="vertical”>
 <LinearLayout orientation="horizontal">
 <TextView text="red" background=”…"/>
 <TextView text="green" background=”…"/>
 <TextView text="blue" background=”…”/>
 <TextView text="yellow" background=”…”/>
 </LinearLayout>

 <LinearLayout orientation="vertical">
 <TextView text="row one" .../>
 <TextView text="row two" .../>
 <TextView text="row three" .../>
 <TextView text="row four" .../>
 </LinearLayout>
</LinearLayout>

Layout in Cocoa: Springs + Struts	

Interface	
 Builder	
 Demo	

2/29/12	

18	

Component Layout	

Border Layout
(direct placement)

NORTH

CENTER

SOUTH
struts springs

“Struts and Springs”
(simple constraint-

based layout)

Each container is responsible
for allocating space for and
positioning its contents

Window

Panel

Label TextArea Panel

Button Button

Specifying Layout	

Declarative 	

e.g., HTML, XAML, MXML,…	

	

Procedural 	

e.g., Java Swing	

	

GUI Builders exist for
either approach ���
(but generating
procedural code is brittle)	

	

Is your UI layout
determined statically or
dynamically at runtime? If
at runtime, may need
procedural approach. 	

<StackPanel>
 <Label>Enter Text:</Label>
 <TextBox TextWrapping="Wrap”>…</TextBox>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Button>Ok</Button>
 <Button>Cancel</Button>
 </StackPanel>
</StackPanel>

2/29/12	

19	

Specifying Layout	

Declarative 	

e.g., HTML, XAML, MXML,…	

	

Procedural 	

e.g., Java Swing	

	

GUI Builders exist for
either approach ���
(but generating
procedural code is brittle)	

	

Is your UI layout
determined statically or
dynamically at runtime? If
at runtime, may need
procedural approach. 	

public void init() {!
 Container c = getContentPane();!
 c.setLayout(new BorderLayout());!
 c.add(new JButton("One"),  

! BorderLayout.NORTH);!
 c.add(new JButton("Two"), !

! BorderLayout.WEST);!
 c.add(new JButton("Three"), !

! !BorderLayout.CENTER);!
 }!

HTML – What kind of Layout?	

2/29/12	

20	

Events	

Events	

User input is modeled as “events” that must be
handled by the system and applications.	

	

Examples?	

- Mouse input (and touch, pen, etc.)	

- Mouse entered, exited, moved, clicked, dragged	

- Inferred events: double-clicks, gestures	

- Keyboard (key down, key up)	

- Sensor inputs	

- Window movement, resizing	

2/29/12	

21	

Anatomy of an Event	

Encapsulates info needed for handlers to ���
react to input	

Event Type (mouse moved, key down, etc)	

Event Source (the input component)	

Timestamp (when did event occur)	

Modifiers (Ctrl, Shift, Alt, etc)	

Event Content	

Mouse: x,y coordinates, button pressed, # clicks	

Keyboard: which key was pressed	

Callbacks	

mouse over

click

drag

onMouseOver(Event	
 e){…}	

onMouseClick(Event	
 e){…}	

onMouseClick(Event	
 e){…}	

onMouseDown(Event	
 e){…}	

onMouseUp(Event	
 e){…}	

Slider	

2/29/12	

22	

Event Dispatch	

Apple, Cocoa Event-Handling Guide

Event Dispatch Loop	

Event Queue	

•  Queue of input events	

Event Loop (runs in dedicated thread)	

•  Remove next event from queue	

•  Determine event type	

•  Find proper component(s)	

•  Invoke callbacks on components	

•  Repeat, or wait until event arrives	

Component	

•  Invoked callback method	

•  Update application state	

•  Request repaint, if needed	

Mouse moved (t0,x,y)

2/29/12	

23	

Event Dispatch Loop	

Apple, Cocoa Event-Handling Guide

2) Event is added to FIFO event queue	

3) Main loop
processes one
event per iteration	

1) Events from input
devices enter here	

Event Dispatch	

Event Queue
•  Mouse moved (t0,x,y)
•  Mouse pressed (t1,x,y,1)
•  Mouse dragged (t2,x,y,1)
•  Key typed (t3, ‘F1’)
•  …
(queues and dispatches
incoming events in a
dedicated thread)

/* callback for TextArea */
public void mouseMoved(e) {
 // process mouse moved event
}

Window	

Panel	

Label	
 TextArea	
 Panel	

BuXon	
 BuXon	

2/29/12	

24	

2/29/12	
 47	

Interactor Tree	

Display	
 Screen	

Outer	
 Win	
 [black]	

Result	
 Win	
 [tan]	

Result	
 String	

Inner	
 Win	
 [green]	

Keypad	
 [Teal]	

-­‐	
 buXon	

+	
 buXon	

0	
 buXon	

=	
 buXon	

7	
 8	
 9	

4	
 5	
 6	

0	
 +	
 -­‐	

1	
 2	
 3	

=	

	
 93.54	

ENT	

Mouse/Touch vs. Keyboard Events	

Mouse Events are (usually) routed to the top-most
(in z-order) visible component underneath the
cursor using hit testing.	

Exception: “captured” mouse events after beginning
interaction	

	

Keyboard events are (usually) routed to the
component that has key focus.	

Exceptions: keys that change focus, accelerator keys	

2/29/12	

25	

Event Dispatch in ObjC / Cocoa	

Mouse events: 	

Dispatched to NSView of object under cursor	

Keyboard events: 	

Dispatched to “first responder” (i.e., object in focus)	

Default NSView implementation does not handle,
forwards to “next responder”: 	

“the event, if not handled, proceeds up the view hierarchy to
the NSWindow object representing the window itself.”���
(Apple)	

	

If view does	

	

Key Focus: Form Example	

1	
 2	

3	
 4	

5	
 6	

2/29/12	

26	

Abstracting Events	

Level of abstraction may vary. Consider:	

	

Mouse down vs. double click vs. drag	

	

Pen move vs. gesture	

	

2/29/12	

27	

Single Tap vs. Double Tap (or Click)	

time	

How should the application ���
be notified of events that have duration?	

Graphics: Apple iPhone Programming Guide

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTap()	

Option 1: Two separate events	

2/29/12	

28	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onDoubleTap()	

Option 1: Two separate events	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTap() onDoubleTap()

How do you prevent this?	

2/29/12	

29	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTap()	

Time-­‐out	
 window	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onDoubleTap()	

Time-­‐out	
 window	

New event within window	

Advantage: simple model for programmer	

Disadvantage: every single tap incurs latency	

2/29/12	

30	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTouchUp()	
 onTouchDown()	
 onTouchUp()	
 onTouchDown()	

Option 2: Let the programmer deal with it.	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTouchUp()	

tapCount	
 =	
 1	

onTouchDown()	

tapCount	
 =	
 1	

onTouchUp()	

tapCount	
 =	
 2	

onTouchDown()	

tapCount	
 =	
 2	

Option 2: Let the programmer deal with it.	

2/29/12	

31	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTouchUp()	

tapCount	
 =	
 1	

onTouchDown()	

tapCount	
 =	
 1	

Option 2: Let the programmer deal with it.	

If	
 you	
 know	
 you	
 don’t	
 need	

double-­‐taps,	
 no	
 latency.	

handleTap()	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTouchUp()	

tapCount	
 =	
 1	

onTouchDown()	

tapCount	
 =	
 1	

Request	
 single	
 tap	
 w/	
 delay:	

Option 2: Let the programmer deal with it.	

handleTap()	

If	
 you	
 know	
 you	
 do	
 need	

double-­‐taps,	
 emulate	
 op[on	
 1.	

2/29/12	

32	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTouchUp()	

tapCount	
 =	
 1	

onTouchDown()	

tapCount	
 =	
 1	

onTouchDown()	

tapCount	
 =	
 2	

Handle	
 	

double	
 tap	

Request	
 single	
 tap	
 w/	
 delay:	

Option 2: Let the programmer deal with it.	

Single Tap vs. Double Tap (or Click)	

time	

Graphics: Apple iPhone Programming Guide

onTouchUp()	

tapCount	
 =	
 1	

onTouchDown()	

tapCount	
 =	
 1	

onTouchDown()	

tapCount	
 =	
 2	

Handle	
 	

double	
 tap	

Request	
 single	
 tap	
 w/	
 delay:	

Option 2: Let the programmer deal with it.	

onTouchUp()	

tapCount	
 =	
 2	

2/29/12	

33	

Detecting Gestures	

Two different kinds of gestures:	

Continuous manipulation gestures: ���
(e.g., pinch-to-zoom)	

	

Stroke recognition gestures���
(e.g., Handwriting recognition, Swype)	

Android Gesture Search: ���
http://www.youtube.com/watch?v=umos1GZKbKw	

	

Detecting Gestures	

Most event architectures assume there is a single,
“correct” response to a single input event. 	

This model is not well suited to describing
multitouch interactions. Why?	

Recognition, co-existence of different gesture types
complicate the picture: input can match multiple
possible interpretations	

How to deal with uncertainty is still a research topic
in HCI.	

	

2/29/12	

34	

Model-View-Controller Architecture	

Model-View-Controller	

OO Architecture for interactive applications	

introduced by Smalltalk developers at PARC ca. 1983	

	

	

Model	

View	

Controller	

2/29/12	

35	

Model	

Information the app is
manipulating	

	

Representation of
real world objects	

circuit for a CAD
program	

logic gates and wires
connecting them	

shapes in a drawing
program	

geometry and color	

Model	

View	

Controller	

View	

Implements a visual
display of the model	

	

May have multiple
views	

e.g., shape view and
numerical view	

	

Model	

View	

Controller	

2/29/12	

36	

Multiple Views	

Source:	

Toxik.sk	

Multiple Views	

2/29/12	

37	

View	

Implements a visual
display of the model	

	

May have multiple
views	

e.g., shape view and
numerical view	

	

Any time model
changes each view
must be notified so it
can update	

e.g., adding a new shape	

	

	

Model	

View	

Controller	

Controller	

Receives all input
events from the user	

	

Decides what events
mean and what to do	

communicates with view
to determine the objects
being manipulated (e.g.,
selection)	

	

calls model methods to
make changes on objects	

model makes change and
notifies views to update	

Model	

View	

Controller	

2/29/12	

38	

Why MVC?	

Why MVC?	

“The user's
conceptual model
of the system
captures the
semantics of
objects,
relationships, and
behavior”	

(Collins)	

	

2/29/12	

39	

Why MVC?	

Combining MVC into one class will not scale	

model may have more than one view	

each is different and needs update when model changes	

	

Separation eases maintenance and extensibility	

easy to add a new view later 	

model info can be extended, but old views still work	

can change a view later, e.g., draw shapes in 3D	

flexibility of changing input handling when using separate
controllers	

Example Application	

Blue circles: 3
Cardinal squares: 2

2/29/12	

40	

Model	

Class AppModel {
 ArrayList<Point> rectangles;
 ArrayList<Point> circles;
 Color rectangleColor;
 Color circleColor;

 …

}

Controller	

Blue circles: 3
Cardinal squares: 2

2/29/12	

41	

Controller	

Blue circles: 3
Cardinal squares: 2

Controller	

Blue circles: 3
Cardinal squares: 2

Click!	

2/29/12	

42	

Controller	

Blue circles: 4
Cardinal squares: 2

Relationship of View & Controller	

“pattern of behavior in response to user events (controller
issues) is independent of visual geometry (view issues)” ���
– Olsen, Chapter 5.2	

	

 	

 	

 	

 	

	

	

	

	

2/29/12	

43	

Relationship of View & Controller	

“pattern of behavior in response to user events (controller
issues) is independent of visual geometry (view issues)” ���
– Olsen, Chapter 5.2	

	

	

	

	

	

	

	

But controller must usually contact view to interpret
what user events mean (e.g., selection)	

Combining View & Controller	

View and controller are
tightly intertwined	

lots of communication
between the two	

	

Almost always occur in
pairs	

i.e., for each view, need a
separate controller	

	

Many architectures
combine into a single
class (“VC”)	

Model	

View	

Controller	

2/29/12	

44	

Terminology	

Is an android.view.View
object an MVC View?	

What about an Activity?���
	

Model-ViewController in Android	

Model:	

Inherit from java.util.Observable class.	

Provide accessors and mutators for state.	

Call setChanged() and notifyObservers()

Activity:	

Implement java.util.Observer: 	

add update() method	

	

2/29/12	

45	

Changing the Display	

How do we redraw graphics
when a shape moves?	

Moving Cardinal Square	

Blue circles: 4
Cardinal squares: 2

2/29/12	

46	

Erase w/ Background Color and Redraw	

Blue circles: 4
Cardinal squares: 2

Changing the Display	

Erase and redraw	

using background color to erase fails	

drawing shape in new position loses ordering	

	

Better: ���
Move in model and then redraw view	

change position of shapes in model	

model keeps shapes in a desired order	

tell all views to redraw themselves in order	

	

 slow for large / complex drawings	

flashing! (can solve w/ double buffering)	

	

2/29/12	

47	

Damage / Redraw Method	

View informs windowing system of areas that are damaged	

does not redraw them right away…	

	

Windowing system	

batches updates	

clips them to visible portions of window	

	

Next time waiting for input	

windowing system calls Repaint() method	

passes region that needs to be updated	

Damage old, Change position in model, Damage new	

Blue circles: 4
Cardinal squares: 2

2/29/12	

48	

From the Android Reference:	

How Android Draws Views
“When an Activity receives focus, it will be
requested to draw its layout. […]

Drawing begins with the root node of the layout.
Drawing is handled by walking the tree and
rendering each View that intersects the invalid region.
The framework will not draw Views that are not in
the invalid region.[…]

You can force a View to draw, by calling invalidate().

MVC Event Flow	

What happens when the user
creates a new shape?	

2/29/12	

49	

Event Flow (cont.)	

	

Assume blue circle selected	

	

Blue circles: 0
Cardinal squares: 0

Event Flow (cont.)	

•  Press mouse over tentative position	

•  Windowing system identifies proper window for event	

•  Controller for drawing area gets mouse click event	

•  Checks mode and sees “circle”	

•  Calls model’s AddCircle() method with new position	

Blue circles: 0
Cardinal squares: 0

2/29/12	

50	

Blue circles: 0
Cardinal squares: 0

Event Flow (cont.)	

AddCircle() adds new circle to model’s list of objects	

	

Model then notifies list of views of change	

drawing area view and text summary view	

	

Views notifies windowing system of damage	

both views notify WS without making changes yet!	

model may override	

Blue circles: 0
Cardinal squares: 0

Event Flow (cont.)	

	

Views return to model, which returns to controller	

Controller returns to event handler	

Event handler notices damage requests pending and responds	

If one of the views was obscured, it would be ignored 	

2/29/12	

51	

Blue circles: 0
Cardinal squares: 0

Event Flow (cont.)	

	

Event handler calls views’ Repaint() methods with damaged areas	

Views redraw all objects in model that are in damaged area	

Dragging at Interactive Speeds	

Damage old, move, damage new method may be too
slow 	

must take less than ~100 ms to be smooth	

	

Solutions	

don’t draw object, draw an outline (cartoon)	

save portion of frame buffer before dragging	

draw bitmap rather than redraw the component	

modern hardware often alleviates the problem	

2/29/12	

52	

Summary	

Event-Driven Interfaces	

Hierarchy of components or widgets	

Input events dispatched to components	

Components process events with callback methods	

	

Model-View-Controller	

Break up a component into	

Model of the data backing the widget(s)	

View determining the look of the widget	

Controller for handling input events	

Provides scalability and extensibility	

Looking Forward	

Containment hierarchy model is now over 20 years old,
designed in a context of significantly less processing and
graphics power.	

	

Dominant model in use today, and still quite useful, but in
many cases limiting.	

	

Limitations:	

Assumes rectangular components	

Limited support for animation	

Level of extensibility (varies by toolkit)	

	

Suitability for next-generation interfaces?	

	

2/29/12	

53	

Multithreading in GUIs	

2/29/12	

54	

Next Time	

Multithreading	

Usability Studies	

Don’t forget to read and submit comment!	

	

Video Prototype Due!	

	

	

	

